Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 562))

Abstract

The origin and physics of the highest energy particles observed continues to elude us. While there are an increasing number of events measured, the number of theories to account for them increases as well. We will briefly review many of the current proposals, and then concentrate on the concept that radio galaxies may account for most, if not all of these events. There are two key steps in the argument: First, only for radio galaxies is there an argument that the physics of these sources requires particles of about 1021 eV in the sources, the radio galaxy hot spots or shocks in relativistic jets. Second, we introduce a model for a magnetic halo wind for our Galaxy, which allows considerable bending of the orbits of these particles as they come into our Galaxy. We show that back-tracing the orbits of the highest energy cosmic events suggests that they may all come from the Virgo cluster, and so probably from the active radio galaxy M87. This confirms a long standing prediction, as well as a theoretical model for the radio galaxy jet emission of M87. With this picture in hand, one clear expectation is that those powerful radio galaxies that have their relativistic jets stuck in the interstellar medium of the host galaxy, such as 30147, will yield limits on the production of secondary particles, such as high energy photons, neutrinos and any new kind of particle, expected in some extensions of the standard model in particle physics. An important consistency check is to explore the consequences of the parameters of the Galactic wind model used, but the new data from HIRES and AGASA as well as the future data expected from AUGER will be crucial in testing the model proposed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Zayyad, T. et al., The cosmic ray energy spectrum as measured in monocular mode by the High Resolution Fly’s Eye experiment, 1999, Proc, 26th ICRC, Salt Lake City, eds. D. Kieda et al. 3, 264–267.

    Google Scholar 

  • Albuquerque, I., Farrar, G. R. & Kolb, E. W., Exotic massive hadrons and ultra-high energy cosmic rays, 1999, Phys. Rev. D 59, ms. 015021 hep-ph/9805288

    Google Scholar 

  • Ahn, E.-J., Medina-Thnco, G., Biermann, P.L., Stanev, T., The origin of the highest energy cosmic rays: Do all roads lead back to Virgo?, 1999, submitted to Phys. Rev. Letters, astro-ph/9911123.

    Google Scholar 

  • Antonov, E.E. et al.: 1999 JETP Letters 69, 650.

    Article  ADS  Google Scholar 

  • Ave, M., et al., Near horizontal showers detected with the Haverah Park Array, 1999, Proc. 26th ICRC, Eds. D. Kieda et al., 1, 365–368.

    Google Scholar 

  • Beck, R., Brandenburg, A., Moss, D., Shukurov, A. & Sokoloff, D., Galactic Magnetism: Recent Developments and Perspectives, 1996, Ann. Rev. Astron. & Astrophys. 34, 155–206.

    Article  ADS  Google Scholar 

  • M. C. Begelman, 1996, in “Cygnus A” Eds. C. L. Carilli and D. Harris, Cambridge Univ. Press, p. 209

    Google Scholar 

  • Berezinsky, V.S. & Kachelriess, M., Ultra-high energy LSP, 1998, Phys. Letters B 422, 163–170; hep-ph/9709485.

    Article  ADS  Google Scholar 

  • Berezinsky, V.S., Blasi, P. & Vilenkin, A., Signatures of Topological Defects, 1998, Phys. Rev. D 58, 103–515; astro-ph/9803271

    Article  Google Scholar 

  • For a recent review see: Bhattacharjee, P. & Sigl, G., Origin and Propagation of Extremely High Energy Cosmic Rays, 1999, Physics Reports (in press), astro-ph/981l011

    Google Scholar 

  • Biermann, L.F., 1950, Z. Naturforsch. 5a, 65

    MathSciNet  ADS  Google Scholar 

  • Biermann, P.L. & Strittmatter, P.A., Synchrotron emission from shock waves in active galactic nuclei, 1987 Astrophys. J., 322, 643–649.

    Article  ADS  Google Scholar 

  • Biermann, P.L., The origin of the highest energy cosmic rays, 1997 J. Phys. G: Nucl. Part. Phys., 23, 1.

    Article  ADS  Google Scholar 

  • Birkel, M. & Sarkar, S., Extremely high energy cosmic rays from relic particle decays, 1998, Astroparticle Physics 9, 297–309, hep-ph/9804285

    Article  ADS  Google Scholar 

  • Blandford, R. D., Znajek, R. L., Electromagnetic extraction of energy from Kerr black holes, 1977, Month. Not. Roy. Astr. Soc. 179, p. 433–456.

    ADS  Google Scholar 

  • Boldt, E. & P. Ghosh, P. So, Cosmic rays from remnants of quasars?, 1999, Month. Not. Roy. Astr. Soc. 307, 491–494.

    Article  ADS  Google Scholar 

  • Breitschwerdt, D., McKenzie, J.F., & Völk, H.J., Galactic winds. I — Cosmic ray and wave-driven winds from the Galaxy, 1991, Astron. & Astroph. 245, 79–98.

    ADS  Google Scholar 

  • Breitschwerdt, D., McKenzie, J.F., & Völk, H.J., Galactic winds. II — Role of the diskhalo interface in cosmic ray driven galactic winds, 1993, Astron. & Astroph. 269, 54–66.

    ADS  Google Scholar 

  • Breitschwerdt, D. & Komossa, S, Galactic Fountains and Galactic Winds, 1999, in Astrophys. & Sp. Sc., Proc. “Astrophys. Dynamics”, Eds. D. Berry et al. (in press)

    Google Scholar 

  • Burke, J.A., Mass flow from stellar systems-I. Radial flow from spherical systems, 1968, Month. Not. Roy. Astr. Soc. 140, 241.

    ADS  Google Scholar 

  • Chung, D. J., Farrar, G. R. & Kolb, E. W. 1998 Phys. Rev. D 55, 5749–5766.

    ADS  Google Scholar 

  • Cunningham, G. et al., The energy spectrum and arrival direction distribution of cosmic rays with energies above 1019 electrovolts, 1980, Astrophys. J. 236, L71–L75

    Article  ADS  Google Scholar 

  • Di Matteo, T., Quataert, E., Allen, S. W., Narayan, R., Fabian, A. C., Low-radiative-efficiency accretion in the nuclei of elliptical galaxies, 2000, Month. Not. Roy. Astr. Soc. 311, 507–52l.

    Article  ADS  Google Scholar 

  • Elbert, J.W., Sommers, P., In search of a source for the 320 EeV Fly’s Eye cosmic ray, 1995 Astrophys. J. 441, 151–16l.

    Article  ADS  Google Scholar 

  • Enßlin, T. et al., Cosmic-Ray Protons and Magnetic Fields in Clusters of Galaxies and Their Cosmological Consequences, 1997, Astrophys. J. 477, 560.

    Article  ADS  Google Scholar 

  • Enßlin, T.A., Biermann, P.L., Klein, U., Kohle, S., Cluster Radio relics as a Tracer of shock waves of the Large Scale Structure Formation, 1998, Astron. & Astroph. 332, 395–409

    ADS  Google Scholar 

  • Enßlin, T., Wang, Y., Nath, B.B. & Biermann, P.L., Black hole energy release to the Gaseous Universe, 1998, Astron. & Astroph. 333, L47–L50; astro-ph/9803105

    ADS  Google Scholar 

  • Faber, S.M. et al., 1997, The Centers of Early-Type Galaxies with HST.IV.Central Parameters, 1997, Astron. J., 114, 1771

    Article  ADS  Google Scholar 

  • Falcke, H., Biermann, P.L., The jet-disk symbiosis I. Radio to X-ray emission models for quasars, 1995, Astron. & Astroph. 293, 665, 1995; sissa: astro-ph/9411096

    ADS  Google Scholar 

  • Falcke, H., The nature of compact radio cores in galaxies, in “The Central Regions of the Galaxy and Galaxies”, Proceedings of the 184th symposium of the International Astronomical Union, held in Kyoto, Japan, August 18–22, 1997. Edited by Yoshiaki Sofue. Publisher: Dordrecht: Kluwer, 1998. ISBN: 079235060X, p. 459

    Google Scholar 

  • Falcke, H., Biermann, P.L., The jet/disk symbiosis III. What the radio cores in GRS1915+105, NGC4258, M81 and Sgr A* tell us about accreting black holes, 1999, Astron. & Astroph. 342, 49–56, astro-ph/9810226

    ADS  Google Scholar 

  • Fargion, D., Mele, B., Salis, A., Ultra-High-Energy Neutrino Scattering onto Relic Light Neutrinos in the Galactic Halo as a Possible Source of the Highest Energy Extragalactic Cosmic Rays, 1999, Astrophys. J. 517, 725–733, astro-ph/9710029.

    Article  ADS  Google Scholar 

  • Farrar, G. R., Detecting light-gluino-containing hadrons, 1996, Phys. Rev. Letters, 76, 4111–4114.

    Article  ADS  Google Scholar 

  • Farrar, G.R. & Biermann, P.L., Correlation between compact radio quasars and ultrahigh energy cosmic rays, 1998 Phys. Rev. Lett. 81, 3579.

    Article  ADS  Google Scholar 

  • Farrar, G.R., Piran, T., GZK Violation — a Tempest in a (Magnetic) Teapot?, 1999, accepted in Phys. Rev. Letters, astro-ph/9906431

    Google Scholar 

  • Gelmini, G., Kusenko, A., Highest-energy cosmic rays from Fermi-degenerate relic neutrinos consistent with Super-Kamiokande results, 1999, Phys. Rev. Letters 82, 5202, hep-ph/9902354

    Article  ADS  Google Scholar 

  • Ginzburg, V.L. & Syrovatskii, S.I.: 1964, The origin of cosmic rays, Pergamon Press, Oxford, Russian edition 1963

    Google Scholar 

  • Gondolo, P., Silk, J., Dark matter annihilation at the Galactic Center, 1999, Phys. Rev. Letters 83, 1719–1722

    Article  ADS  Google Scholar 

  • Greisen, K.: 1966 Phys. Rev. Lett. 16, 748.

    Article  ADS  Google Scholar 

  • de Gouveia dal Pino, Elisabete M., Medina-Tanco, Gustavo A., Magnetically Driven Outflows in a Starburst Environment, 1999, Astrophys. J. 518, 129–137.

    Article  ADS  Google Scholar 

  • Han, J.L. & Qiao, G.J., The magnetic field in the disk of our Galaxy, 1994 Astron. & Astroph. 288, 759–772

    ADS  Google Scholar 

  • Han, J.L., Manchester, R.N., Berkhuijsen, E.M., & Beck, R., Antisymmetric rotation measures in our Galaxy: evidence for an AO dynamo, 1997 Astron. & Astroph. 322, 98–102.

    ADS  Google Scholar 

  • Han, J.L., Manchester, R.N., & Qiao, G.J., Pulsar rotation measures and the magnetic structure of our Galaxy, 1999 Month. Not. Roy. Astr. Soc. 306, 371–380.

    Article  ADS  Google Scholar 

  • Hayashida, N. et al., Observation of a Very Energetic Cosmic Ray Well Beyond the Predicted 2.7 K Cutoff in the Primary Energy Spectrum, 1994 Phys. Rev. Lett., 73, 3491–3494.

    Article  ADS  Google Scholar 

  • Hayashida, N. et al., Possible Clustering of the Most Energetic Cosmic Rays within a Limited Space Angle Observed by the Akeno Giant Air Shower Array, 1996 Phys. Rev. Lett. 77, 1000–1003.

    Article  ADS  Google Scholar 

  • Hill, C. et al., Implications of the ultrahigh-energy cosmic-ray spectrum observed by the Fly’s Eye detector, 1986 Phys. Rev. D 34, 1622–1625.

    Article  ADS  Google Scholar 

  • Hillas, A.M., The Origin of Ultra-High-Energy Cosmic Rays, 1984 Ann. Rev. Astron. Astrophys. 22, 425–444.

    Article  ADS  Google Scholar 

  • Ivanov, A.A. et al., Azimuthal effect on extensive air showers of cosmic rays, 1999, Proc, 26th ICRC, Eds. D. Kieda et al., 1, 403.

    Google Scholar 

  • Johnson, H.E. & Axford, W.I., Galactic Winds, 1971, Astrophys. J. 165, 381.

    Article  ADS  Google Scholar 

  • Jokipii, J. R., Morfill, G., Ultra-high-energy cosmic rays in a galactic wind and its termination shock, 1987, Astrophys. J. 312, 170

    Article  ADS  Google Scholar 

  • Jones, F. C., Acceleration of Cosmic Rays by Colliding Galaxies, Workshop on Observing Giant Cosmic Ray Air Showers From 1020 eV Particles From Space: College Park, Maryland, November, 1997. Editors John F. Krizmanic, Jonathan F. Ormes, and Robert E. Streitmatter. Woodbury, New York: AlP Conference Proceedings, v. 433, 1998., p. 37

    Google Scholar 

  • Kaneda, H. et al., Complex spectra of the Galactic ridge X-rays observed with ASCA, 1997, Astrophys. J. 491, 638–652

    Article  ADS  Google Scholar 

  • Kang, H., Rachen, J.P., Biermann, P.L., Contributions to the cosmic ray flux above the ankle: Clusters of galaxies, 1997, Month. Not. Roy. Astr. Soc. 286, 257–267, astro-ph/9608071

    ADS  Google Scholar 

  • Kephardt T.W., Weiler T.J., Magnetic monopoles as the highest energy cosmic ray primaries, 1996, Astroparticle Physics 4, 271–279

    Article  ADS  Google Scholar 

  • Kormendy, J.; Norman, C. A., Observational constraints on driving mechanisms for spiral density waves, 1979, Astrophys. J. 233, 539–552.

    Article  ADS  Google Scholar 

  • Kouveliotou, C. et al., An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806-20, 1998, Nature 393, 235–237

    Article  ADS  Google Scholar 

  • Krause, F. & Beck, R., Symmetry and direction of seed magnetic fields in galaxies, 1998 Astron. & Astroph. 335, 789–796

    ADS  Google Scholar 

  • Kronberg, P.P., Biermann, P.L., Schwab, F.R., The nucleus of M82 at radio and X-ray bands: Discovery of a new population of supernova candidates, 1985, Astrophys. J. 291, 693–707.

    Article  ADS  Google Scholar 

  • Kronberg, P.P.: 1994 Rep. Prog. Phys., 51, 325.

    Article  ADS  Google Scholar 

  • Kulsrud, R. M., Cen, R., Ostriker, J. P. & Ryu, D., The Protogalactic Origin for Cosmic Magnetic Fields, 1997, Astrophys. J. 480, 481

    Article  ADS  Google Scholar 

  • Kuzmin, V.A. & Rubakov, V.A., Ultra-High Energy Cosmic Rays: a Window to Post-Inflationary Reheating Epoch of the Universe?, 1998, Phys. Atom. Nucl. 61 1028–1030; 1998, Yad.Fiz. 61, 1122–1124, astro-ph/9709187.

    ADS  Google Scholar 

  • Leahy, J.P. & Gizani, N.A.B., Testing minimum energy with powerful radio sources in clusters of galaxies, 1999 to appear in Life Cycles of Radio Galaxies, ed. J. Biretta et al., New Astronomy Reviews, astro-ph/9909121

    Google Scholar 

  • Lightman, A.P., Shapiro, S.L., 1978, Rev. Mod. Phys. 50, 437–481.

    Article  ADS  Google Scholar 

  • Lovelace, R.V.E., Dynamo model of double radio sources, 1976, Nature 262, 649–652.

    Article  ADS  Google Scholar 

  • Mathews, W.G. & Baker, J.C., Galactic Winds, 1971, Astrophys. J. 170, 241.

    Article  ADS  Google Scholar 

  • Medina Tanco, G.A., Dal Pino, E.M. de G. & Horvath, J.E., Deflection of Ultra-High-Energy Cosmic Rays by the Galactic Magnetic Field: From the Sources to the Detector, 1998a, Astrophys. J. 492, 200.

    Article  ADS  Google Scholar 

  • Medina Tanco, G.A., On the Significance of the Observed Clustering of Ultra-High-Energy Cosmic Rays, 1998b, Astrophys. J. Letters 495, L71.

    Article  ADS  Google Scholar 

  • Medina Tanco, G.A., The Effect of Highly Structured Cosmic Magnetic Fields on Ultra-High-Energy Cosmic-Ray Propagation, 1998c, Astrophys. J. Letters 505, L79-L82. Medina Tanco, G.A., The Energy Spectrum Observed by the AGASA Experiment and the Spatial Distribution of the Sources of Ultra-High-Energy Cosmic Rays, 1999, Astrophys. J. Letters 510, L91–L94.

    Google Scholar 

  • Nagar, N. M., Wilson, A. S., Falcke, H., 1999, Central Engines & Accretion Mechanisms in Low-Luminosity AGN, American Astronomical Society Meeting 195, # 65.03

    Google Scholar 

  • Nellen, L., Mannheim, K., Biermann, P.L., Neutrino production through hadronic cascades in AGN accretion disks, 1993, Phys. Rev. D 47, 5270, hep-ph/9211257

    Article  ADS  Google Scholar 

  • Norman, C.A., Melrose, D.B., Achterberg, A., The Origin of Cosmic Rays above 1018.5 eV, 1995, Astrophys. J. 454, 60–68

    Article  ADS  Google Scholar 

  • O'Dea, C.P., The Compact Steep-Spectrum and Gigahertz Peaked-Spectrum Radio Sources, 1998, Publ. Astron. Soc. Pacific 110, 493–532

    Article  ADS  Google Scholar 

  • Papadopoulos, P.P. et al., CO (4-3) and Dust Emission in Two Powerful High-Z Radio Galaxies, and CO Lines at High Redshifts, 2000, Astrophys. J. 528, 626–636, astroph/ 9908286 Werf, S.

    Article  ADS  Google Scholar 

  • Parker, E.N., Dynamics of the Interplanetary Gas and Magnetic Fields, 1958, Astrophys. J. 128, 664.

    Article  ADS  Google Scholar 

  • Parker, E. N., Magnetic monopole plasma oscillations and the survival of Galactic magnetic fields, 1987, Astrophys. J. 321, 349–354.

    Article  ADS  Google Scholar 

  • Piran, T., Gamma-ray bursts and the fireball model, 1999, Physics Reports, 314, 575

    Article  ADS  Google Scholar 

  • Protheroe, R.J., Biermann, P.L., Photon-photon absorption above a molecular cloud torus in blazars, Astroparticle Physics 6, 293–300, 1997, sissa astro-ph/9608052

    Article  ADS  Google Scholar 

  • Ptuskin, V.S., Völk, H.J., Breitschwerdt, D., & Zirakashvili, V.N., Transport of relativistic nucleons in a galactic wind driven by cosmic rays, 1997 Astron. & Astroph. 321, 434–443.

    ADS  Google Scholar 

  • Rachen, J.P., Stanev, T. & Biermann, P.L., Extragalactic ultra-high cosmic rays: Comparison with experimental data, 1993 Astron. & Astroph. 273, 377.

    ADS  Google Scholar 

  • Rachen J.P. & Meszaros P., 1998, Phys. Rev. D, 58, 123005

    Article  ADS  Google Scholar 

  • Ryu, D., Kang, H. & Biermann, P.L., Cosmic magnetic field in large scale filament and sheets, 1998, Astron. & Astroph. 335, 19–25.

    ADS  Google Scholar 

  • Seemann, H. & Biermann, P.L., Unstable wavesin winds of magnetic massive stars, 1997, Astron. & Astroph. 327, 273j astro-ph/9706117

    Google Scholar 

  • Sigl, G., Lemoine, M., & Olinto, A.V.: 1997, Phys. Rev. D 56, 4470–4479; astroph/9704204.

    Article  ADS  Google Scholar 

  • Sigl, G. & Lemoine, M., Reconstruction of source and cosmic magnetic field characteristics from clusters of ultra-high energy cosmic rays, 1998, Astroparticle Physics 9, 65–78

    Article  ADS  Google Scholar 

  • Sigl, G., Biermann, P.L., Ultrahigh energy cosmic ray propagation in the local supercluster, 1999, Astroparticle Physics 10, 141–156; astro-ph/9806283

    Article  ADS  Google Scholar 

  • Simard-Normandin, M. & Kronberg, P.P.: 1979 Nature 279, 115

    Article  ADS  Google Scholar 

  • Snowden, S.L. et al., ROSAT Survey Diffuse X-Ray Background Maps. II., 1997, Astrophys. J. 485, 125.

    Article  ADS  Google Scholar 

  • Stanev, T. et al., Arrival directions of the most energetic cosmic rays, 1995, Phys. Rev. Letters 75, 3056–3059.

    Article  ADS  Google Scholar 

  • Stanev, T., Ultra-High-Energy Cosmic Rays and the Large-Scale Structure of the Galactic Magnetic Field, 1997, Astrophys. J. 479, 290.

    Article  ADS  Google Scholar 

  • Stecker, F., Effect of photo-meson production by the universal radiation field on high energy cosmic rays, 1968, Phys. Rev. Letters 21, 1016–1018.

    Article  ADS  Google Scholar 

  • Takeda, M. et al., Extension of the cosmic-ray energy spectrum beyond the predicted Greisen-Zatsepin-Kuzmin cutoff, 1998 Phys. Rev. Letters 81, 1163–1169.

    Article  ADS  Google Scholar 

  • Takeda, M. et al., Small-ScaleAnisotropy of Cosmic Rays above 019 eV Observed with the Akeno Giant Air Shower Array, 1999, Astrophys. J. 522, 225–237; astro-ph/9902239.

    Article  ADS  Google Scholar 

  • Uchihori, Y. et al., Cluster analysis of EHECR in the Northern Sky, 1996 In Proc. “Extremely High Energy Cosmic Rays”, Ed. M. Nagano, University of Tokyo meeting, p. 50-60.

    Google Scholar 

  • Valinia, A., Marshall, F.E., RXTE measurements of the diffuse X-ray emission from the Galactic ridge: Implications for the energetics of the interstellar medium, 1998, Astrophys. J. 505, 134–147

    Article  ADS  Google Scholar 

  • Vallée, J.P., A possible excess rotation measure and large-scale magnetic field in the Virgo Supercluster of galaxies, 1990, Astron. J. 99, 459–462.

    Article  ADS  Google Scholar 

  • Wang, Y.-P., Biermann, P.L., A possible mechanism for the mass ratio limitation in early type galaxies, Astron. & Astroph. 334, 87–95, 1998, astroph/9801316

    ADS  Google Scholar 

  • Watson, A.A.: 1981, Cosmology and Particles, 16th Rencontres de Moriond, Ed. J. Adouze et al., p. 49-67, Editions Frontieres.

    Google Scholar 

  • Waxman, E. & Bahcall, J.N., High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs, 1997 Phys. Rev. Letters 78, 2292–2295; astro-ph/9701231.

    Article  ADS  Google Scholar 

  • Waxman E., Gamma-Ray-Burst Afterglow: Supporting the Cosmological Fireball Model, Constraining Parameters, and Making Predictions, 1997a, Astrophys. J. 485, L5

    Article  ADS  Google Scholar 

  • Waxman E., Angular Size and Emission Timescales of Relativistic Fireballs, 1997b, Astrophys. J. 491, L19

    Article  ADS  Google Scholar 

  • Weiler, T.J., Resonant absorption of cosmic ray neutrinos by the relic-neutrino background, 1982, Phys. Rev. Lett. 49, 234–237.

    Article  ADS  Google Scholar 

  • Weiler, T.J., Big bang cosmology, relic neutrinos, and absorption of neutrino cosmic rays, 1984, Astrophys. J. 285, 495–500.

    Article  ADS  Google Scholar 

  • Weiler, T.J., Cosmic-ray neutrino. annihilation on relic neutrinos revisited: a mechanism for generating air showers above the Greisen-Zatsepin-Kuzmin cutoff, 1999 Astroparticle Physics 11, 303–316; hep-ph/9710431.

    Article  ADS  Google Scholar 

  • Wick, St., Weiler, T.J., Kephardt, T., Biermann, P.L., Signatures for a cosmic Flux of magnetic monopoles, 2000, astro-ph/0001233.

    Google Scholar 

  • Wiebel-Sooth, B. & Biermann, P.L., Cosmic Rays, 1999 Landolt-Börnstein, vol. VI/3c, Springer Verlag, p. 37-90.

    Google Scholar 

  • Zatsepin, G.T. & Kuzmin, V.A.: 1966 Sov. Phys.-JETP Lett. 4, 78.

    ADS  Google Scholar 

  • Zirakashvili, V.N., Breitschwerdt, D., Ptuskin, V.S. Völk, H.J., Magnetohydrodynamic wind driven by cosmic rays in a rotating galaxy, 1996, Astron. & Astroph. 311, 113–126.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Biermann, P.L., Ahn, EJ., Medina-Tanco, G., Stanev, T. (2001). Origin and Physics of the Highest Energy Particles in the Universe. In: Sánchez, N.G. (eds) Current Topics in Astrofundamental Physics: The Cosmic Microwave Background. NATO Science Series, vol 562. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0748-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0748-1_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6856-4

  • Online ISBN: 978-94-010-0748-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics