Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 372))

  • 353 Accesses

Abstract

Vapor-grown carbon fibers (VGCF) were produced from a methane-hydrogen mixture on a reconstituted graphite support using the [Fe3(CO)12] complex as catalyst precursor. The fibers thus produced were submitted to different oxidative treatments: nitric acid, oxygen plasma and partial gasification with air or carbon dioxide. The original and the oxidised fibers were characterised by X-ray diffraction, SEM, AFM, nitrogen adsorption, XPS and ToF-SIMS. The use of nitric acid or plasma as oxidation agents does not affect significantly the surface morphology of the fibers, but greatly increases the number of surface oxygen functions. The air and carbon dioxide treatments do not lead to significant increase either of the surface area, or of the quantity of surface oxygen containing groups, despite the important weight loss attained (50%). This peculiar observation has been interpreted by considering the presence of traces of iron at the fibers surface, which catalyse the gasification of carbon. Removal of this iron by acid washing allows an improvement of the specific surface area. A detailed study of the gasification in air gave valuable informations on the intimate structure of the VGCF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tibbetts, GG, Bernardo, CA, Gorkiewicz, DW and Alig, RL (1994) Role of sulfur in the production of carbon fibers in the vapor phase, Carbon,32, 569–576.

    Article  CAS  Google Scholar 

  2. Tibbetts, GG (1990) Vapor-grown carbon fibers, in JL Figueiredo, CA Bernardo, RTK Baker and KJ Hüttinger (eds.), Carbon Fibers Filaments and Composites, Kluwer Academic Publishers, Dordrecht, pp. 73–94.

    Chapter  Google Scholar 

  3. Serp, Ph, Figueiredo, JL and Bernardo, CA (1996) Influence of sulfur on the formation of vapor-grown carbon fibers produced on a substrate using different iron catalyst precursors, in KR Palmer, DT Marx and MA Wright (eds.), Carbon and Carbonaceous Composite Materials, World Scientific, Singapore, pp.134–147.

    Google Scholar 

  4. Tibbetts, GG Balogh, MP (1999) Increasing in yield of carbon fibres grown above the iron/carbon eutetic, Carbon 37,241–247.

    Article  CAS  Google Scholar 

  5. Fan, YY, Cheng, HM, Wei, YL, Su, G, Shen, ZH (2000) The influence of preparation parameters on the mass production of vapor-grown carbon nanofibers, Carbon, 38, 789–795.

    Article  CAS  Google Scholar 

  6. Serp, Ph and Figueiredo, JL (1996) A microstructural investigation of vapor-grown carbon fibers, Carbon 34,1452–1454.

    Article  CAS  Google Scholar 

  7. Le, QT, Schouler, MC, Garden, J and Gadelle, P (1999) Fe(NO3)3.9H20 and Fe3(CO)12 as catalyst precursors for the elaboration of VGCF. SEM and TEM study-improvement of the process, Carbon, 37, 505–514.

    Article  CAS  Google Scholar 

  8. Piraux, L, Nysten, B, Haquenne, A, Issi, J-P, Dresselhaus, MS and Endo, M (1984) The temperature variation of the thermal conductivity of benzene-derived carbon fibers, Solid State Communications, 50, 697–700.

    Article  CAS  Google Scholar 

  9. Issi, J-P and Nysten, B, (1998) Electrical and thermal transport properties in carbon fibers, in J-B Donnet, S Rebouillat, TK Wang and JCM Peng (eds.), Carbon Fibers, Marcel Dekker, New York, pp. 371–461.

    Google Scholar 

  10. Suzuki, M (1994) Activated carbon fiber: Fundamentals and applications, Carbon,32, 577–586.

    Article  CAS  Google Scholar 

  11. Serp, Ph, Figueiredo, JL, Bertrand, P and Issi, J-P (1998) Surface treatments of vapor-grown carbon fibers produced on a substrate, Carbon 36, 1791–1799.

    Article  CAS  Google Scholar 

  12. Serp, Ph, Figueiredo, JL, Nysten, B and Issi, J-P (1999) Surface treatments of vapor-grown carbon fibers produced on a substrate. Part II: Atomic force microscopy, Carbon, 37, 1809–1816.

    Article  Google Scholar 

  13. Kowbel, W and Shan, CH (1990) The mechanism of fiber-matrix interactions in carbon-carbon composites, Carbon, 28, 287–299.

    Article  CAS  Google Scholar 

  14. Ismail, IK and Vangsness, MD (1988) On the improvement of carbon fiber/matrix adhesion, Carbon, 26, 749–751.

    Article  CAS  Google Scholar 

  15. Jones, C and Sammann, E (1990) The effect of low power plasmas on carbon fibre surfaces, Carbon, 28, 509–514.

    Article  CAS  Google Scholar 

  16. Qin, RY and Donnet, J-B (1994) Study of carbon fiber surfaces by scanning tunneling microscopy, Part III. Carbon fibers after surface treatments, Carbon, 32, 323–328.

    Article  CAS  Google Scholar 

  17. Smiley, RJ and Delgass, WN (1993) AFM, SEM and XPS characterization of PAN-based carbon fibres etched in oxygen plasmas, J.Mater.Sci., 28, 3601–3611.

    Article  CAS  Google Scholar 

  18. Baker, RTK (1986) Metal catalyzed gasification of graphitein JL Figueiredo and JA Moulijn (eds.), Carbon and Coal Gasification, Martinus Nijhoff, Dordrecht, pp. 231–268.

    Chapter  Google Scholar 

  19. Tibbetts, GG and McHugh, JJ (1999) Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices, J. Mater. Res., 14, 2871–2880.

    Article  CAS  Google Scholar 

  20. Darmstadt, H, Roy, C, Kaliaguina, S, Ting, JM and Alig, R.L (1996) Surface spectroscopic analysis of vapour-grown carbon fibres prepared under various conditions, Carbon, 36, 1183–1190.

    Article  Google Scholar 

  21. Zielke, U, Hettinger, KJ and Hoffman, WP (1996) Surface-oxidized carbon fibers: I. Surface structure and chemistry, Carbon, 34, 983–998.

    Article  CAS  Google Scholar 

  22. Zielke, U, Hüttinger, KJ and Hoffman, WP (1996) Surface-oxidized carbon fibers: IV. Interaction with high-temperature thermoplastics, Carbon, 34, 1015–1026.

    Article  CAS  Google Scholar 

  23. Ehrburger, P (1990) Surface properties of carbon fibres, in JL Figueiredo, CA Bernardo, RTK Baker and KJ Hüttinger (eds.), Carbon Fibers Filaments and Composites, Kluwer Academic Publishers, Dordrecht,, pp. 147–161.

    Chapter  Google Scholar 

  24. Serp Ph and Figueiredo JL (1997) An investigation of vapor-grown carbon fiber behavior towards air oxidation, Carbon, 35, 675–683.

    Article  CAS  Google Scholar 

  25. Madroñero, A, Merino, C and Hendry, A (1998) Characterisation of carbon fibres grown from carbonaceous gases by measurements of their density and oxidation resistance, Eur. J. Solid State Inorg. Chem., 35, 715–734.

    Article  Google Scholar 

  26. Smith, GW (1984) Oxidation resistance of pyrolytically grown carbon fibers, Carbon, 22, 477–479.

    Article  CAS  Google Scholar 

  27. Tibbetts, GG and Beetz Jr, CP (1987) Mechanical properties of vapour-grown carbon fibres, J. Phys. D: Appl. Phys., 20, 292–297.

    Article  CAS  Google Scholar 

  28. Oberlin, A, Endo, M and Koyoma, T (1972) J. Cryst. Growth, 32, 335.

    Article  Google Scholar 

  29. Jacobsen, RL, Tritt, TM, Guth, JR, Ehrlich, AC and Gillespie, DJ (1995) Mechanical properties of vapor grown carbon fiber, Carbon, 33, 1217–1221.

    Article  CAS  Google Scholar 

  30. Yoshida, A, Hishiyama, Y and Inagaki, M (1990) Exfoliation of vapor-grown graphite fibers as studied by scanning electron microscope, Carbon,28, 539–543.

    Article  CAS  Google Scholar 

  31. Walker Jr, PL, Rusinko Jr, F and Austin, LG (1959) Gas reactions of carbon, in DD Eley, PW Selwood, PB Weisz (eds.), Advances in Catalysis, Vol. 11, Academic Press, New York, p. 133–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Figueiredo, J.L., Serp, P. (2001). Gasification and Surface Modification of Vapor-Grown Carbon Fibers. In: Biró, L.P., Bernardo, C.A., Tibbetts, G.G., Lambin, P. (eds) Carbon Filaments and Nanotubes: Common Origins, Differing Applications?. NATO Science Series, vol 372. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0777-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0777-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6908-0

  • Online ISBN: 978-94-010-0777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics