Skip to main content

Spatially Resolved EELS on Carbon-Based Nanostructures

  • Conference paper
Nanostructured Carbon for Advanced Applications

Part of the book series: NATO Science Series ((NAII,volume 24))

Abstract

An electron energy-loss spectroscopy (EELS) experiment measures the energy distribution of a monochromatic electron beam which has been scattered by a target. It therefore corresponds to a transfer of energy E from the primary beam of energy E0 into the probed sample. Such an inelastic event reflects the dynamic response of the specimen. Depending on the nature of the target (gas, surface, thin film) and on the primary energy (from a few eV up to the MeV range), the investigated excitation spectrum covers a wide energy range from the meV to the keV (i.e. from the IR to the X-ray photon domain).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colliex, C. (1984) Electron energy-loss spectroscopy in the electron microscope, in Advances in Optical and Electron Microscopy, eds. R. Barer and V.E. Cosslett, Academic Press, London, Vol. 9, pp. 65–177

    Google Scholar 

  2. Egerton, R. (1996) Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edition, Plenum Press, New York

    Google Scholar 

  3. Colliex, C. (1992) Electron energy-loss spectroscopy on solids, in International Tables of Crystallography, Kluwer Press, Vol. C, pp. 338–359

    ADS  Google Scholar 

  4. Colliex, C. (1995) Investigation of local electronic properties in solids by transmission electron energy-loss spectroscopy, in Core Level Spectroscopies for Magnetic Phenomena, Eds. P.S. Bagus, G. Pacchioni and F. Parmigiani, NATO ASI Series B: Physics, Vol. 345, pp. 213–233

    Google Scholar 

  5. Disko, M.M., Ahn, C.C. and Fultz, B. (1992) Transmission Electron Energy-Loss Spectrometry in Materials Science, TMS Warrendale, Pa 15086

    Google Scholar 

  6. Reimer, L. (1995) Energy-Filtering Transmission Electron Microscopy, Springer Series in Optical Sciences, vol. 71, Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  7. Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (1985) C60 buckminsterfullerene, Nature 318, 162–164

    Article  ADS  Google Scholar 

  8. Ugarte, D. (1992) Curling and closure of graphitic networks under electron-beam irradiation, Nature 359, 707–709

    Article  ADS  Google Scholar 

  9. Iijima, S. (1991) Helical microtubules of graphitic carbon, Nature 354, 56–58

    Article  ADS  Google Scholar 

  10. Stöhr, J. (1996) NEXAFS Spectroscopy, 2nd edition, Springer Series in Surface Sciences, vol. 25, Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  11. Bruley, J.et al. (1995) Quantitative near-edge structure analysis of diamond-like carbon in the electron microscope using a 2-window method, J. Microscopy 180, 22–32

    Article  Google Scholar 

  12. Jeanguillaume, C. and Colliex, C. (1989) Spectrum-image: the next step in EELS digital acquisition and processing, Ultramicroscopy 28, 252–257

    Article  Google Scholar 

  13. Bouchet, D. et al. (1998) Mapping the chemistry and electron states in nanostructures with a subnanometer probe of high energy electrons, in The Electron’1, Proc. International Centennial Symposium on the Electron, Cambridge, Eds. A. Kirkland and P.D. Brown, The Institute of Materials, pp. 247–257

    Google Scholar 

  14. Colliex, C. et al. (1999) Electron energy-loss spectroscopy (EELS) on nano-dimensional structures, J. Electron Microscopy 48 (Suppl.)995–1003

    Google Scholar 

  15. Cohen, H., Maniv, T., Tenne, R., Rosenfeld-Hacohen, Y., Stephan, O. and Colliex, C. (1998) Near-field electron energy-loss spectroscopy of nanoparticles, Phys. Rev. Lett. 80, 782–785

    Article  ADS  Google Scholar 

  16. Stephan, O. (1996) Etude de la chimie locale et de la structure électronique de nanotubes de carbone purs ou composites par spectroscopie de pertes d’énergie d’électrons, Thèse de doctorat, Université de Paris-Sud

    Google Scholar 

  17. Tencé, M., Quartuccio, M. and Colliex, C. (1995) PEELS compositional profiling and mapping at nanometer spatial resolution, Ultramicroscopy 58, 42–54

    Article  Google Scholar 

  18. Bonnet, N., Brun, N. and Colliex, C. (1999) Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis, Ultramicroscopy 77, 97–112

    Article  Google Scholar 

  19. Serin, V. and Sikora, T (2000), see EELS library at www.cemes.fr/eelsdb/

  20. Ajayan, P.M. et al. (1994) Growth of manganese filled carbon nanofibers in the vapor phase, Phys. Rev. Lett. 72, 1722–1725

    Article  ADS  Google Scholar 

  21. Demoncy, N., Stéphan, O., Brun, N., Colliex, C., Loiseau, A. and Pascard, H. (1998) Filling carbon nanotubes with metal by the arc-discharge method: the key role of sulphur, Eur. Phys. J. B 4, 147–157

    Article  ADS  Google Scholar 

  22. Suenaga, K., Colliex, C., Demoncy, N., Loiseau, A., Pascard, H. and Willaime, F. (1997) Synthesis of nanoparticles and nanotubes with wellseparated layers of boron nitride and carbon, Science 278, 653–655

    Article  ADS  Google Scholar 

  23. Suenaga, K., Willaime, F., Loiseau, A. and Colliex, C. (1999) Organisation of carbon and boron nitride layers in mixed nanoparticles and nanotubes synthesised by arc-discharge, Applied Physics A 68, 301–308

    Article  Google Scholar 

  24. Johansson, M.P., Suenaga, K., Hellgren, N., Colliex, C., Sundgren, J.E. and Hultman, L. (2000) Template synthesised BN:C nanoboxes, Appl. Phys. Lett. 76, 825–827

    Article  ADS  Google Scholar 

  25. Ajayan, P.M., Stéphan, O., Redlich, Ph. and Colliex, C. (1995) Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures, Nature 375, 564–567

    Article  ADS  Google Scholar 

  26. Zhang, Y., Suenaga, K., Colliex, C. and lijima, S. (1998) Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon, Science 281, 973–975

    Article  ADS  Google Scholar 

  27. lijima, S. et al. (1999) Nano-aggregates of single-walled graphitic carbon nano-horns, Chem. Phys. Lett. 309, 165–170

    Article  ADS  Google Scholar 

  28. Suenaga, K., Sandré, E., Colliex, C., Pickard, C.J., Kataura, H. and lijima, S. (2000) EELS investigation of electron states in isolated carbon nanostructures, submitted

    Google Scholar 

  29. Stephan, O., Ajayan, P.M., Colliex, C., Cyrot-Lackmann, F. and Sandré, E. (1996) Curvature induced bonding changes in carbon nanotubes, Phys. Rev. B 53, 13824–13829

    Article  ADS  Google Scholar 

  30. Wildöer, J., Venema, L.C., Rinzler, A.G., Smalley, R.E. and Dekker, C. (1998) Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59–62

    Article  ADS  Google Scholar 

  31. Williams, P., Lévy-Clément, C., Brun, N. and Colliex, C. (2000) Nearfield electron energy-loss spectroscopy in porous silicon, J. Porous Materials 7, 159–163

    Article  Google Scholar 

  32. Howie, A. and Milne R.H., (1985) Excitations at interfaces and small particles, Ultramicroscopy 18, 427–434

    Article  Google Scholar 

  33. Ugarte, D., Colliex, C. and Trebbia, P. (1992) Surface and interface plasmon modes on small semiconducting spheres, Phys. Rev. B 45, 4332–4343

    Article  ADS  Google Scholar 

  34. Kociak, M., Henrard, L., Stéphan, O., Suenaga, K. and Colliex, C. (2000) Plasmons in layered nanospheres and nanotubes investigated by spatially resolved EELS, Phys. Rev. B 61, 13936–13944

    Article  ADS  Google Scholar 

  35. Hellgren, N., Johansson, M.P., Broitman, E., Hultman, L. and Sundgren, P.E. (1999) Role of nitrogen in the formation of hard an elastic CNx thin films by reactive magnetron sputtering, Phys. Rev. B 59, 5162–5169

    Article  ADS  Google Scholar 

  36. Amaratunga, G.A.J., Chhowalla, M., Kiely, C.J., Alexandrou, I., Aharonov, R. and Devenish, R.M. (1996) Hard elastic carbon thin films from linking of carbon nanoparticles, Nature 383, 321–323

    Article  ADS  Google Scholar 

  37. Suenaga, K. et al. (1999) Carbon nitride nanotubulite: densely-packed and well aligned tubular nanostructures, Chem. Phys. Lett. 300, 695–700

    Article  ADS  Google Scholar 

  38. Suenaga, K., Yudasaka, M., Colliex, C. and Iijima, S. (2000) Radially modulated nitrogen distribution in CNX nanotubular structures prepared by CVD using Ni phtalocyanin, Chem. Phys. Lett. 316, 365–372

    Article  ADS  Google Scholar 

  39. Terrones, M., Hsu, W.K., Kroto, H.W. and Walton D.R.M. (1999) Nanotubes: a revolution in materials science and electronics, in Topics in Current Chemistry, vol. 199, Springer Verlag Berlin Heidelberg, pp. 190–233

    Google Scholar 

  40. Sandré, E., Pickard, C.J. and Colliex, C. (2000) What are the possible structures for CNX compounds ? The example of C3N, Chem. Phys. Lett. 325, 53–60

    Article  ADS  Google Scholar 

  41. Grillo, S., Hellgren, N., Serin, V., Broitman, E., Colliex, C. and Hultman, L. (2000) Monitoring the structural and chemical properties of CNX thin films during in-situ annealing in a TEM, Eur. Phys. J.: Applied Physics, in press

    Google Scholar 

  42. Tencé, M. et al. (1989) Electron irradiation effects: a time-energy representation, Inst. Phys. Conf. Series 98, 311–314

    Google Scholar 

  43. Terrones, M. et al. (1999) Carbon nitride nanocomposites: formation of aligned nanofibers, Advanced Materials 11, 655–659

    Article  Google Scholar 

  44. Trasobares S., Räty, R., Hug, G. and Colliex, C. (2000) A route to study the carbon-nitrogen bond in CNX thin films: EELS chrono-spectroscopy of the molecular melamine precursor, in preparation

    Google Scholar 

  45. Trasobares, S. et al. (2000) Nanocapsules in carbon nanotubes as containers for gas filling, storage and release, submitted

    Google Scholar 

  46. Krivanek, O.L., Delby, N. and Lupini, A.R. (1999) Toward sub-angström electron beams, Ultramicroscopy 78, 1–11

    Article  Google Scholar 

  47. Terauchi, M., Tanaka, M., Tsuno, K. and Ishida, M. (1998) Development of a high energy resolution electron energy-loss spectroscopy microscope, J. Microscopy 194, 203–209

    Article  Google Scholar 

  48. Mook, H.M. and Kruit, P., (1999) Ultramicroscopy 78, 43–51

    Article  Google Scholar 

  49. Suenaga, K., Colliex, C. and Fijima, S. (2001) In-situ electron energy-loss spectroscopy on carbon nanotubes during deformation, Appl. Phys. Lett., in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Colliex, C., Kociak, M., Stephan, O., Suenaga, K., Trasobares, S. (2001). Spatially Resolved EELS on Carbon-Based Nanostructures. In: Benedek, G., Milani, P., Ralchenko, V.G. (eds) Nanostructured Carbon for Advanced Applications. NATO Science Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0858-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0858-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7042-0

  • Online ISBN: 978-94-010-0858-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics