Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 6))

Abstract

Downsizing of the active region of semiconductor lasers to zero dimension has different effects on static and dynamic laser parameters. Due to the thermodynamics of low dimensional electron hole plasmas the most prominent effects are the threshold reduction and the improved temperature stability. Based on the changed density of states also effects on the modulation response and beam quality of the laser are theoretically expected but not yet demonstrated. This obvious discrepancy between theoretical expectations and experimental results must be related to additional effects as carrier transport and relaxation. After a brief review of nano fabrication aspects of dot lasers as self assembled methods as well as lithography based implantation and etching methods, laser device properties based on thermodynamics in low dimensional systems will be discussed. Strong emphasis will be put on carrier dynamics (transport, recombination, and relaxation). On the footing of a rate equation approach we discuss the static and dynamic properties of quantum dot lasers as a function of the dot array filling factor. Also some applications and device properties will be discussed. Based on periodic dot arrays gain coupled dot distributed feedback lasers can be realized which result in an improved side mode suppression ratio of the laser emission. From modulation experiments extremely low dynamic chirp of dot lasers can be observed making quantum dot lasers possibly promising candidates for high speed communication in the long wavelength range if modulation response limitations can be solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Fukui, H. Saito, and Y. Tokura, Appl. Phys. Lett. 55, 1958 (1989).

    Article  ADS  Google Scholar 

  2. J. Gaines et al., J.Vac. Sci. Technol. B 6, 1378 (1988).

    Article  ADS  Google Scholar 

  3. M. Miller et al., J. Cryst. Growth 111, 323 (1991).

    Article  ADS  Google Scholar 

  4. M. Miller et al., Phys. Rev. Lett. 68, 3464 (1992).

    Article  ADS  Google Scholar 

  5. Z. Xu, M. Wassermeier, Y. Li, and P. Petro, Appl. Phys. Lett. 60, 586 (1992).

    Article  ADS  Google Scholar 

  6. E. Kapon et al., Appl. Phys. Lett. 60, 477 (1992).

    Article  ADS  Google Scholar 

  7. M. Walther et al., Phys. Rev. B 45, 6333 (1992).

    Article  ADS  Google Scholar 

  8. IIIA-planes are formed by group III atoms and IIIB-planes are formed by group V atoms. Therefore growth rates of III–V crystals are higher on IIIA-planes than on IIIB-planes.

    Google Scholar 

  9. E. Kapon, Quantum Well Lasers — Quantum Wire Semiconductor Lasers, peter s. zory, jr. ed. (Academic Press, INC., Boston San Diego New York London Sydney Tokyo Toronto, 1993).

    Google Scholar 

  10. B. Maile et al., Appl. Phys. Lett. 57, 807 (1990).

    Article  ADS  Google Scholar 

  11. G. Lehr et al., Appl. Phys. Lett. 61, 517 (1992).

    Article  ADS  Google Scholar 

  12. U. A. Griesinger et al., Photon. Technol. Lett. 7, 953 (1996).

    Article  ADS  Google Scholar 

  13. U. A. Griesinger et al., IEEE Phot. Technol. Letters 8, 587 (1996).

    Article  ADS  Google Scholar 

  14. U. A. Griesinger et al., J.Vac. Sci. Technol. B 14(6), 4058 (1996).

    Article  Google Scholar 

  15. A. Forchel et al., Microelectronic Engineering 32, 317 (1996).

    Article  Google Scholar 

  16. B. Maile, Dissertation, Universit. at Stuttgart, 4. Phys. Inst., Pfa_enwaldring 57, 1990.

    Google Scholar 

  17. R. Germann, Dissertation, Universit. at Stuttgart, 4. Phys. Inst., Pfa_enwaldring 57, 1990.

    Google Scholar 

  18. M. Burkard et al., Appl. Phys. Lett. 70, 1290 (1997).

    Article  ADS  Google Scholar 

  19. J. Cibert et al., Appl. Phys. Lett. 49, 1275 (1986).

    Article  ADS  Google Scholar 

  20. H. Leier et al., Microelectronic Engineering 11, 43 (1990).

    Article  Google Scholar 

  21. H. Leier et al., J. Appl. Phys. 67, 1805 (1990).

    Article  ADS  Google Scholar 

  22. H. Leier et al., Appl. Phys. Lett. 56, 48 (1990).

    Article  ADS  Google Scholar 

  23. C. Vieu et al., J. Appl. Phys. 71, 5012 (1992).

    Article  ADS  Google Scholar 

  24. F. E. Prins, G. Lehr, H. Schweizer, and G. W. Smith, Appl. Phys. Lett. 63, 1402 (1993).

    Article  ADS  Google Scholar 

  25. F. D. Prins et al., Jap. Journ. Appl. Phys. 32, 6228(1993).

    Article  ADS  Google Scholar 

  26. M. Burkard et al., J.Vac. Sci. Technol. B 12, 3677(1994).

    Article  Google Scholar 

  27. W. Beinstingl et al., J.Vac. Sci. Technol. B 9, 3479 (1991).

    Article  Google Scholar 

  28. N. Kirstaedter et al., Europhys. Lett. 30, 1416 (1994).

    Google Scholar 

  29. N. Kirstdter et al., APL 69, 1226 (1996).

    Google Scholar 

  30. H. Shoji et al., Jap. Journ. Appl. Phys. 35, L903 (1996).

    Article  ADS  Google Scholar 

  31. H. Shoji et al., IEEE Journal OF Selected Topics IN Quantum Electronics 3(2), 188 (1997).

    Article  Google Scholar 

  32. D. Bimberg et al., IEEE Journal OF Selected Topics IN Quantum Electronics 3(2), 196 (1997).

    Article  Google Scholar 

  33. S. Zaiztsev et al., Superlattices and Microstructures 21, 559 (1997).

    Article  ADS  Google Scholar 

  34. V. Ustinov et al., J. Crystal Growth 175, 689 (1997).

    Article  ADS  Google Scholar 

  35. N. Chand et al., Appl. Phys. Lett. 58, 1704 (1991).

    Article  ADS  Google Scholar 

  36. D. Huaker et al., Appl. Phys. Lett. 70, 2356 (1997)29

    Article  ADS  Google Scholar 

  37. F. Heinrichsdor et al., Appl. Phys. Lett. 71, 22 (1997).

    Article  ADS  Google Scholar 

  38. H. Shoji et al., Appl. Phys. Lett. 71, 193 (1997).

    Article  ADS  Google Scholar 

  39. K. Kamath et al., Electron. Lett. 32, 1374 (1996).

    Article  Google Scholar 

  40. R. Mirin, A. Gossard, and J. Bowers, Electron. Lett. 32, 1732 (1996).

    Article  Google Scholar 

  41. S. Fafard et al., Science 274, 1350(1996).

    Article  ADS  Google Scholar 

  42. K. Hinzler et al., Journal Physika EMSS8, 68 (1997).

    Google Scholar 

  43. D. Huaker et al., Appl. Phys. Lett. 73, 2564 (1998).

    Article  ADS  Google Scholar 

  44. M. Z. K. Eberl et al., Appl. Phys. Lett. submitted, (1998).

    Google Scholar 

  45. T. Riedel, E. Fehrenbacher, A. Hangleiter, and M. Z. K. Eberl, Appl. Phys. Lett, submitted, (1998).

    Google Scholar 

  46. P. Porsche, A. Ruf, M. Geiger, and F. Scholz, J. Crystal Growth 195, 591 (1998).

    Article  ADS  Google Scholar 

  47. G. Liu et al., Electron. Lett. 35, 1163 (1999).

    Article  Google Scholar 

  48. H. Saito, K. Nishi, Y. Sugimoto, and S. Sugou, Electron. Lett. 35, 1561 (1999).

    Article  Google Scholar 

  49. D. Bimberg, M. Grundmann, and N. Ledentsov, Quantum dot heterostructures, p. 328 (John Wiley, & Sons,, Chichester, 1999).

    Google Scholar 

  50. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).

    Article  ADS  Google Scholar 

  51. The chemical potential of dot systems can not be approximated by theintegral over states it must be summed up over discrete energy levels.

    Google Scholar 

  52. H. Schweizer et al., phys. stat. sol. (b) 173, 331 (1992).

    Article  ADS  Google Scholar 

  53. H. Schweizer et al., Superlattices and Microstructures 12, 419 (1992).

    Article  ADS  Google Scholar 

  54. M. Willatzen, T. Tanaka, and Y. Arakawa, IEEE J. Quantum Electron. 30, 640 (1994).

    Article  ADS  Google Scholar 

  55. U. Bockelmann and G. Bastard, Phys. Rev. B 45, 1688 (1992).

    Article  ADS  Google Scholar 

  56. E. Kane, The kp-method in: Semiconductor and Semimetals (R.K. Willardson and A.C. Beer Vol. 1 Physics of III–V Compounds Academic Press, New York, 1966).

    Google Scholar 

  57. M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron. QE 22, 1915 (1986).

    Article  ADS  Google Scholar 

  58. J. Wang et al., Appl. Phys. Lett. 69, 287 (1996).

    Article  ADS  Google Scholar 

  59. J. Wang, U. Griesinger, and H. Schweizer, Appl. Phys. Lett. 69, 1585 (1996).

    Article  ADS  Google Scholar 

  60. J. Wang, U. Griesinger, and H. Schweizer, Appl. Phys. Lett. 70, 1152 (1997).

    Article  ADS  Google Scholar 

  61. J. Wang et al., IEEE Journal of Selected Topics in Quantum Electronics 3, 223 (1997).

    Article  Google Scholar 

  62. G. Biasiol, E. Kapon, Y. Ducammun, and A. Gustafsson, Phys. Rev. B 57, R9416 (1998-II).

    Article  ADS  Google Scholar 

  63. S. Ishida, Y. Arakawa, and K. Wada, APL 72, 800 (1998).

    Google Scholar 

  64. A. Hartmann, L. Loubies, F. Reinhaedt, and E. Kapon, APL 71, 1314 (1998).

    Google Scholar 

  65. F. Frank and J. van der Merwe, Proc. Roy. Soc. LondonA 198, 205 (1949).

    Article  ADS  MATH  Google Scholar 

  66. I. Stranski and L. Krastanov, Akad. Wiss. Wien Kl. IIb 146, 797 (1938).

    Google Scholar 

  67. M. Volmer and A. Weber, Z. Phys. Chem. 119, 277 (1926).

    Google Scholar 

  68. M. Burkard et al., J. Appl. Phys. 82, 1 (1997).

    Article  Google Scholar 

  69. U. A. Griesinger et al., IEEE Phot. Technol. Letters 7, 953 (1995).

    Article  ADS  Google Scholar 

  70. A. U. and, Appl. Phys. Lett., (1998).

    Google Scholar 

  71. E. Zielinski et al., J. Appl. Phys. 59, 2196 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schweizer, H. et al. (2000). Quantum Dot Lasers. In: Pavesi, L., Buzaneva, E. (eds) Frontiers of Nano-Optoelectronic Systems. NATO Science Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0890-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0890-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6746-8

  • Online ISBN: 978-94-010-0890-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics