Skip to main content

Dynamical Systems and Biological Regulations

  • Chapter
Complex Systems

Abstract

We consider in this tutorial particular features of many definitions of attractors given in the literature by looking at examples of attracting cycles. We prove by considering specific counterexamples, that there is in fact no order between definitions, only some of them being weaker than others. The chaotic case is also discussed. After which we study mathematical properties of the “natural measure” of a semi-orbit and show that this set function is not a measure. In spite of this fact, this definition may be used in order to define fractal dimensions and dimension functions of an attractor. We compare these dimensions, by studying for example the equality between the two dimension functions proposed by Grassberger, and by Hentschel and Procaccia. Then we study the distribution of the point-wise dimension in the special case of the Baker transformation. We propose one example of application in neuromodelling. We consider after the case of a universal minimal regulatory system (called a regulon), having a positive and a negative circuit in its interaction matrix, and we recall the main results related to the presence of such circuits. Finally, we give two examples of application of the interaction matrix: one concerns the dual problems of synchronization and de-synchronization of a neural model (susceptible to serve as a sketch for hippocampus memory evocation processes), and the second deals with the problem of occurrence of weak parts along the chromosomes, related to the ubiquitory genes expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atiya, A. and Baldi, P. (1989) Oscillations and Synchronisations in Neural Networks: an Exploration of the Labelling Hypothesis, International Journal of Neural Systems, 1, p. 103.

    Article  Google Scholar 

  2. Balatoni, A. and Renyi, A. (1956) Publ. Math. Inst. Hung. Acad. Sci., 1, p. 9 (in Hungarian), and (in English): Selected Papers, Academiai, Budapest, p. 558 (1976).

    MATH  Google Scholar 

  3. Bertrandias, J.-P. (1971) Introduction à l’Analyse Fonctionnelle (in French), Série U, Armand Colin, Paris.

    Google Scholar 

  4. Billingsley, P. (1965) Ergodic Theory and Information, Wiley, New York.

    MATH  Google Scholar 

  5. Bonneuil, N. (1990) Turbulent Dynamics in a XVIIth Century Population, Math. Pop. Studies, 2, p. 289.

    Article  MATH  Google Scholar 

  6. Bosch, H., Milanese, R., Labbi, A. and Demongeot, J. A Neural Model Combining Rate and Oscillation Coding, submitted.

    Google Scholar 

  7. Bowen, R. (1978) On Axiom A Diffeomorphisms, Reg. Conf. Series in Maths, 35, A.M.S., Providence.

    Google Scholar 

  8. Cohen, O., Cans, C, Cuillel, M., Gilardi, J.L., Roth, H., Mermet, M.A., Jalbert, P. and Demongeot, J. (1996) Cartographic Study: Breakpoints in 1574 Families Carrying Human Reciprocal Translocations, Hum. Genet, 97, pp. 659–667.

    Article  Google Scholar 

  9. Cosnard, M. and Demongeot, J. (1985) Attracteurs: une Approche Déterministe, C.R. Acad. Sc., 300, p. 551.

    MathSciNet  MATH  Google Scholar 

  10. Cosnard, M. and Demongeot, J. (1985) On the Definitions of Attractors, Springer Lecture Notes in Maths., 1163, p. 23.

    Article  MathSciNet  Google Scholar 

  11. Delbrück, M. (1949) Discussion in Unités Biologiques Douées de Continuité Génétique, Colloques Internationaux CNRS, 8, p. 33.

    Google Scholar 

  12. Demongeot, J. (1998) Multistationarity and Cell Differentiation, J. Biol. Sys., 6, p. 1.

    Article  Google Scholar 

  13. Demongeot, J., Aracena, J., Ben Lamine, S., Mermet, M.A. and Cohen, O. (2000) Hot Spots in Chromosomal Breakage: From Description to Etiology, in Gene Order Dynamics, Comparative Maps & Multigene Families, Springer-Verlag, LCNS, to appear.

    Google Scholar 

  14. Demongeot, J. and Benaouda, D. (1993) Simulation Aléatoire et Confineurs. Application aux Réseaux de Neurones, in Systémique et Cognition, AFCET, Paris, p. 31.

    Google Scholar 

  15. Demongeot, J. and Besson, J. (1996) The Genetic Code and Cyclic Codes, C.R. Acad. Sci., 319, pp. 443–451

    Google Scholar 

  16. Demongeot, J. and Jacob, C. (1989) Confineurs: une Approche Stochastique, C.R. Acad. Sci., 56, p. 206.

    Google Scholar 

  17. Demongeot, J. and Jacob, C. (1990) Confiners, Stochastic Equivalents of Attractors, in Stochastic Modelling in Biology, P. Tautu, ed., World Scientific, Singapore, p. 309.

    Google Scholar 

  18. Demongeot, J., Jacob, C. and Cinquin, P. (1987) Periodicity and Chaos in Biological Systems: New Tools for the Study of Attractors, Life Science Series, Plenum, 138, p. 255.

    Google Scholar 

  19. Demongeot, J., Kaufman, M. and Thomas, R. (2000) Interaction Matrices, Regulation Circuits and Memory, C.R. Acad. Sci., 323, pp. 69–80.

    Article  Google Scholar 

  20. Demongeot, J., Kulesa, P. and Murray, J.D. (1997) Compact Set Valued Flows II: Applications in Biological Modelling, C.R. Acad. Sci. Paris, 324, Serie lIb, p. 107.

    Google Scholar 

  21. Demongeot, J., Pachot, P., Baconnier, P., Benchetrit, G., Muzzin, S. and Pham Dinh T. (1987) Entrainment of the Respiratory Rhythm: Concepts and Techniques of Analysis, in Concepts and Formalizations in the Control of Breathing, G. Benchetrit et al., eds., Manchester Un. Press, Manchester, p. 217.

    Google Scholar 

  22. Derrida, B. (1987) Valleys and Overlaps in Kaufrman’s Model, Philos Mag B, 56, p. 917.

    Article  Google Scholar 

  23. Destexhe, A. (1992) Aspects Non-linéaires de l’Activité Rythmique du Cerveau, Thèse, Université Libre de Bruxelles (in French).

    Google Scholar 

  24. Eckmann, J.P. and Ruelle, D. (1985) Ergodic Theory of Chaos and Strange Attractors, Rev. Mod. Phys., 57, p. 617.

    Article  MathSciNet  Google Scholar 

  25. Farmer, J.D. (1982) Information Dimension and the Probabilistic Structure of Chaos, Z. Naturforsch., 37a, p. 1304.

    MathSciNet  Google Scholar 

  26. Feigenbaum, M.J. (1978) Quantitative Universality for a Class of Nonlinear Transformations, J. Stat. Phys., 19, p. 2.

    Article  MathSciNet  Google Scholar 

  27. Feigenbaum, M.J. (1979) The Universal Metric Properties of Non-linear Transformations, J. Stat. Phys.,21, p. 669.

    Article  MathSciNet  MATH  Google Scholar 

  28. Feller, W. (1971) An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York, 2nd ed., p. 155.

    MATH  Google Scholar 

  29. Gouzé, J.L. (1998) Positive and Negative Circuits in Dynamical Systems, J. Biol. Sys., 6, p. 11.

    Article  MATH  Google Scholar 

  30. Gouzé, J.L., Lasry, J.M. and Changeux, J.P. (1983) Selective Stabilization of Muscle Innervation during Development: a Mathematical Mode, Biol. Cybern., 46, pp. 207–215.

    Article  MATH  Google Scholar 

  31. Grassberger, P. and Proccacia, I. (1983) Measuring the Strangeness of Strange Attractors, Physica D, 9, p. 189.

    Article  MathSciNet  MATH  Google Scholar 

  32. Grassberger, P. (1983) Generalised Dimensions of Strange Attractors, Phys. Rev. Lett. A, 97, p. 227.

    MathSciNet  Google Scholar 

  33. Guckenheimer, J. and Holmes, P. (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York.

    MATH  Google Scholar 

  34. Halmos, P.R. (1974) Measure Theory, Springer-Verlag, New York.

    MATH  Google Scholar 

  35. Hénon, M. (1976) A Two-Dimensional Mapping with a Strange Attractor, Comm. Math. Phys.,50, p. 69.

    Article  MathSciNet  MATH  Google Scholar 

  36. Hentschel, H.G.E. and Procaccia, I. (1983) The Infinite Number of Generalised Dimensions of Fractals and Strange Attractors, Physica D, 8, p. 435.

    Article  MathSciNet  MATH  Google Scholar 

  37. Hippocampus: Computational Models of Hippocampal Function in Memory (1996) Vol. 6, Num. 6, Wiley Liss, New York.

    Google Scholar 

  38. Holschneider, M. (1988) Fractal Dimensions: a New Definition, Preprint IHES.

    Google Scholar 

  39. Kadanoff, L.P. (1986) Fractal Measures and their Singularities: The Characterisation of Strange Sets, Phys. Rev. A, 33, p. 114.

    MathSciNet  Google Scholar 

  40. Kauffman, S. (1993) The Origins of Order, Oxford University Press, Oxford, England.

    Google Scholar 

  41. Kaufman, M., Urbain, J. and Thomas, R. (1985) Towards a Logical Analysis of the Immune Response, J. Theor. Biol., 114, p. 527.

    Article  MathSciNet  Google Scholar 

  42. Lausberg, C. (1987) Calcul Numérique des Dimensions Fractales d’un Attracteur Étrange, Thesis, Institut National Polytechnique de Grenoble, (in French).

    Google Scholar 

  43. Lorenz, E. (1963) Deterministic Nonperiodic Flows, J. Atmos. Sci., 20, p. 130.

    Article  Google Scholar 

  44. Mandelbrot, B.B. (1975) Forme, Hasard et Dimension, Flammarion, Paris.

    MATH  Google Scholar 

  45. Mandelbrot, B.B. (1983) The Fractal Geometry of Nature, Freeman, New York.

    Google Scholar 

  46. May, R.M. (1976) Simple Mathematical Models with very Complicated Dynamics, Nature, 261, p. 459.

    Article  Google Scholar 

  47. Mendoza, L. and Alvarez-Buylla, E.R. (1998) Dynamics of the Genetic Regulatory Network for Arabidopsis Thaliana Flower Morphogenesis, J. Theor. Biol., 193, p. 307.

    Article  Google Scholar 

  48. Milnor, J. (1985) On the Concept of Attractor, Comm. Math. Phys., 99, p. 177.

    Article  MathSciNet  MATH  Google Scholar 

  49. Muraille, E., Leo, O. and Kaufman, M. (1985) The Role of Antigen Presentation in the Regulation of Class Specific (Thl/Th2) Immune Response, J. Biol. Sys., 3, p. 420.

    Google Scholar 

  50. Murray, J.D. (1995) Mathematical Biology, Series Biomathematics 2nd edition, Springer-Verlag, New York.

    Google Scholar 

  51. Paladin, G. and Vulpiani, A. (1984) Characterization of Strange Attractors as Inhomogeneous Fractals, Lett. Nuovo Cimento, 4, p. 82.

    Article  MathSciNet  Google Scholar 

  52. Pham Dinh, T., Demongeot, J., Baconnier, P. and Benchetrit, G. (1983) Simulation of a Biological Oscillator: the Respiratory Rhythm, J. Theor. Biol., 108, p. 113.

    Article  Google Scholar 

  53. Plahte, E., Mestl, T. and Omholt, S.W. (1995) Feedback Loops, Stability and Multistationarity in Dynamical Systems, J. Biol. Sys., 3, p. 409.

    Article  Google Scholar 

  54. Ruelle, D. (1981) Small Random Perturbations of Dynamical Systems and the Definitions of Attractors, Comm. Math. Phys., 82, p. 137.

    Article  MathSciNet  MATH  Google Scholar 

  55. Saltzman, B., Sutera, A. and Evenson, A. (1981) Structural Stochastic Stability of a Simple Auto-Oscillatory Climatic Feedback System, J. Atmosph. Sci., 38, p. 494.

    Article  Google Scholar 

  56. Snoussi, E.H. (1998) Necessary Condition for Multistationarity and Stable Periodicity, J. Biol. Sys., 6, p. 3.

    Article  MATH  Google Scholar 

  57. Snoussi, E.H. (1989) Qualitative Dynamics of Piece-Linear Differential Equations: a Discrete Mapping Approach, Dyn. Stability Syst., 4, p. 189.

    MathSciNet  MATH  Google Scholar 

  58. Snoussi, E.H. and Thomas, R. (1993) Logical Identification of all Steady States: the Concept of Feedback Loop Characteristic States, Bull. Math. Biol., 55, p. 973.

    MATH  Google Scholar 

  59. Takens, F. (1985) On the Numerical Determination of the Dimension of an Attractor, Springer Lecture Notes in Math., 1125, p. 99.

    Article  MathSciNet  Google Scholar 

  60. Thieffry, D., Colet, M. and Thomas, R. (1993) Formalization of Regulatory Networks: a Logical Method and its Automatization, Math. Modeling Sci. Computing, 2, p. 144.

    Google Scholar 

  61. Thieffry, D. and Thomas, R. (1995) Dynamical Behaviour of Biological Regulatory Networks. II. Immunity Control in Temperate Bacteriophages, Bull. Math. Biol., 57, p. 236.

    Google Scholar 

  62. Thomas, R. (1980) On the Relation between the Logical Structure of Systems and their Ability to Generate Multiple Steady States or Sustained Oscillations, Springer Series in Synergetics, 9, p. 1.

    Google Scholar 

  63. Thomas, R. (1994) The Role of Feedback Circuits: Positive Feedback Circuits are a Necessary Condition for Positive Real Eigenvalues of the Jacobian Matrix, Ber. Bunsenges. Phys. Chem., 98, pp. 1148–1151.

    Article  Google Scholar 

  64. Thomas, R. and D’Ari, R. (1990) Biological Feedback, Boca Raton, CRC Press.

    MATH  Google Scholar 

  65. Thomas, R. and Thieffry, D. (1995) Les Boucles de Rétroaction, Rouages des Réseaux de Régulation Biologique, Médecine/Sciences, 11, p. 189.

    Google Scholar 

  66. Thomas, R., Thieffry, D. and Kaufman, M. (1995) Dynamical Behaviour of Biological Regulatory Networks. I. Biological Role and Logical Analysis of Feedback Loops, Bull. Math. Biol., 57, p. 362.

    Google Scholar 

  67. Tonnelier, A., Meignen, S., Bosch, H. and Demongeot, J. (1999) Synchronization and Desynchronization of Neural Oscillators, Neural Networks, 12, pp. 1213–1228.

    Article  Google Scholar 

  68. Vaienti, S. (1988) Generalised Spectra for the Dimensions of Strange Sets, J. Phys. A, 21, p. 2313.

    Article  MathSciNet  MATH  Google Scholar 

  69. Williams, R.F. (1974) Expanding Attractors, Publ. Math. IHES, 43, p. 169.

    Google Scholar 

  70. Wilson, H.R. and Cowan, J.D. (1972) Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons, Biological Journal, 12, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Demongeot, J., Aracena, J., Lamine, S.B., Meignen, S., Tonnelier, A., Thomas, R. (2001). Dynamical Systems and Biological Regulations. In: Goles, E., Martínez, S. (eds) Complex Systems. Nonlinear Phenomena and Complex Systems, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0920-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0920-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3817-1

  • Online ISBN: 978-94-010-0920-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics