Skip to main content
  • 158 Accesses

Abstract

Five decades of clinical transplantation have seen a dramatic improvement in many aspects of patient outcome, largely attributable to better quality immunosuppressive agents and their more judicious use. The success of contemporary immunosuppression is underscored by a reduction in the incidence of acute rejection rates between 1988 and 1998 from 60 to 20 percent and an improvement in one-year renal allograft survival rates to around 90 percent over the past 2 decades [1],[2]. Over the same period, despite substantial evidence implicating acute rejection as a major risk factor for chronic allograft nephropathy, the early benefits of our current immunosuppressive agents have not been maintained in the long-term. Historically, the immunosuppressive arsenal has encompassed predominantly steroid-based therapy initially and subsequently, the introduction of antimetabolites, calcineurin phosphatase inhibition, as well as antilymphocyte antibodies. Most of these agents are broadly acting and non-specific in their immunosuppressive effect. Consequently, these drugs have been associated with the spectrum of risks of global over-immunosuppression, including the development of life-threatening infectious complications and the increased risk of certain malignancies. Besides risk related to excessive immunosuppression, these medications have all been implicated in the plethora of serious non-immune related adverse effects, including perturbations in metabolic pathways (diabetes mellitus, osteopenia, hyperlipidemia), renal function (renal failure, hypertension), as well as several cosmetically disfiguring manifestations (weight gain, skin friability and bruising, hirsutism and alopecia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cecka, J.M., The UNOS Scientific Renal Transplant Registry. Clinical Transplantation, 1997: p. 1–14.

    Google Scholar 

  2. United States Renal Data System, 1998 USRDS Annual Data Report, 1998, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD.

    Google Scholar 

  3. Janeway, C.H. and K. Bottomly, Signals and Signs for Lymphocyte Responses. Cell, 1994. 76: p. 275–285.

    Article  PubMed  CAS  Google Scholar 

  4. van Leeuwen, J.E. and L.E. Samelson, T cell antigen-receptor signal transduction. Curr Opin Immunol, 1999. 11(3): p. 242–248.

    Article  PubMed  Google Scholar 

  5. DeSilva, D.R., K.B. Urdahl, and M.K. Jenkins, Clonal anergy is induced in vitro by T cell receptor occupancy in the absence of proliferation. J. Immunol., 1991. 147: p. 3261–3267.

    PubMed  CAS  Google Scholar 

  6. Jenkins, M.K., et al., T cell unresponsiveness in vivo and in vitro: fine specificity of induction and molecular characterization of the unresponsive state. Immunol. Rev., 1987. 95: p. 113.

    Article  PubMed  CAS  Google Scholar 

  7. Noel, P.J., et al., CD28 costimulation prevents cell death during primary T cell activation. Journal of Immunology, 1996. 157: p. 636–642.

    CAS  Google Scholar 

  8. Bluestone, J.A., New perspectives of CD28-B7-mediated T cell costimultion. Immunity, 1995. 2(6): p. 555–559.

    Article  PubMed  CAS  Google Scholar 

  9. June, C.H., et al., The B7 and CD28 receptor families. Immunology Today, 1994. 15(7): p. 321–331.

    Article  PubMed  CAS  Google Scholar 

  10. Viola, A. and A. Lanzavecchia, T cell activation determined by T cell receptor number and tunable thresholds. Science, 1996. 273: p. 104–106.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, K.M., et al., Molecular basis of T cell inactivation by CTLA-4. Science, 1998. 282(5397): p. 2263–2266.

    Article  PubMed  CAS  Google Scholar 

  12. Bluestone, J.A., Is CTLA-4 a master switch for peripheral T cell tolerance?. J. Immunol., 1997. 158(5): p. 1989–1993.

    PubMed  CAS  Google Scholar 

  13. Krummel, M.F. and J.P. Allison, CTLA-4 Engagement Inhibits IL-2 Accumulation and Cell Cycle Progression upon Activation of Resting T Cells. J. Exp. Med., 1996. 183: p. 2533–2540.

    Article  PubMed  CAS  Google Scholar 

  14. Lin, H., et al., Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28. J Exp Med, 1998. 188: p. 199–204.

    Article  PubMed  CAS  Google Scholar 

  15. Freeman, G.J., et al., Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science, 1993. 262: p. 907–909.

    Article  PubMed  CAS  Google Scholar 

  16. Sharpe, A.H., Analysis of lymphocyte costimulation in vivo using transgenic and ‘knockout’ mice. Curr Opin Immunol, 1995. 7(3): p. 389–395.

    Article  PubMed  CAS  Google Scholar 

  17. Schweitzer, A.N., et al., Role of costimulators in T cell differentiation: studies using antigen-presenting cells lacking expression of CD80 or CD86. J Immunol, 1997. 158(6): p. 2713–2722.

    PubMed  CAS  Google Scholar 

  18. Mandelbrot, D.A., et al., Expression of B7 molecules in recipient, not donor, mice determines the survival of cardiac allografts [In Process Citation]. J Immunol, 1999. 163(7): p. 3753–3757.

    PubMed  CAS  Google Scholar 

  19. Shahinian, A., et al., Differential T cell costimulatory requirements in CD28-deficient mice. Science, 1993. 261: p. 609–612.

    Article  PubMed  CAS  Google Scholar 

  20. Kawai, K., et al., Skin allograft rejection in CD28-deficient mice. Transplantation, 1996. 61: p. 352–355.

    Article  PubMed  CAS  Google Scholar 

  21. Wu, Y., et al., CTLA-4-B7 interaction is sufficient to costimulate T cell clonal expansion. J Exp Med, 1997. 185: p. 1327–1335.

    Article  PubMed  CAS  Google Scholar 

  22. Durie, F.H., et al., The role of CD40 in the regulation of humoral and cell-mediated immunity. Immunology Today, 1994. 15(9): p. 406–411.

    Article  PubMed  CAS  Google Scholar 

  23. Sayegh, M.H. and L.A. Turka, The role of T cell co-stimulatory activation pathways in transplant rejection. N Engl J Med, 1998. 338: p. 1813–1821.

    Article  PubMed  CAS  Google Scholar 

  24. Watts, T.H. and M.A. DeBenedette, T cell co-stimulatory molecules other than CD28. Curr Opin Immunol, 1999. 11(3): p. 286–293.

    Article  PubMed  CAS  Google Scholar 

  25. Liu, Y., et al., Distinct costimulatory molecules are required for the induction of effector and memory cytotoxic T lymphocytes. J Exp Med, 1997. 185: p. 251–262.

    Article  PubMed  CAS  Google Scholar 

  26. Lenschow, D., et al., Long-Term Survival of Xenogeniec Pancreatic Islet Grafts Induced by CTLA4Ig. Science, 1992. 257: p. 789–792.

    Article  PubMed  CAS  Google Scholar 

  27. Turka, L.A., et al., T cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA, 1992. 89: p. 11102–11105.

    Article  PubMed  CAS  Google Scholar 

  28. Linsley, P.S., et al., CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med, 1991. 174: p. 561–569.

    Article  PubMed  CAS  Google Scholar 

  29. Sayegh, M.H. and L.A. Turka, T cell costimulatory pathways: Promising novel targets for immunosuppression and tolerance induction. J Am Soc Nephrol, 1995. 6: p. 1143–1150.

    PubMed  CAS  Google Scholar 

  30. Sayegh, M., et al., Donor antigen is necessary for the prevention of chronic rejection in CTLA4Ig-treated murine cardiac allografts. Transplantation, 1998. 64: p. 1646–1650.

    Article  Google Scholar 

  31. Larsen, C.P., et al., Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature, 1996. 381: p. 434–438.

    Article  PubMed  CAS  Google Scholar 

  32. Wekerle, T., et al., Extrathymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance. J Exp Med, 1998. 187(12): p. 2037–2044.

    Article  PubMed  CAS  Google Scholar 

  33. Kirk, A., et al., CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc. Natl. Acad. Sci. (USA), 1997. 94: p. 8789–8794.

    Article  CAS  Google Scholar 

  34. Kirk, A.D., et al., Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates [In Process Citation]. Nat Med, 1999. 5(6): p. 686–693.

    Article  PubMed  CAS  Google Scholar 

  35. Kenyon, N.S., et al., Long-term survival and function of intrahepatic islet allografts in baboons treated with humanized anti-CD154. Diabetes, 1999. 48(7): p. 1473–1481.

    Article  PubMed  CAS  Google Scholar 

  36. Kenyon, N.S., et al., Long-term survival and function of intrahepatic islet allografts in rhesus monkeys treated with humanized anti-CD154. Proc Natl Acad Sci USA, 1999. 96(14): p. 8132–8137.

    Article  PubMed  CAS  Google Scholar 

  37. Levisetti, M., et al., Immunosuppressive effects of hCTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation. J Immunol, 1997. 159: p. 5187–5191.

    PubMed  CAS  Google Scholar 

  38. Guinan, E.C., et al., Transplantation of anergic histoincompatible bone marrow allografts. New England Journal of Medicine, 1999. 340(22): p. 1704–1714.

    Article  PubMed  CAS  Google Scholar 

  39. Abrams, J.R., et al., CTLA4Ig-mediated blockade of T cell costimulation in patients with psoriasis vulgaris. The Journal of Clinical Investigation, 1999. 103(9): p. 1243–1252.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bloom, R.D., Turka, L.A. (2001). Costimulation Blockade. In: Sayegh, M.H., Remuzzi, G. (eds) Current and Future Immunosuppressive Therapies Following Transplantation. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1005-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1005-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3876-8

  • Online ISBN: 978-94-010-1005-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics