Skip to main content

Excitons and Electronic Collective Excitations in Molecular Organic Solids

  • Chapter
Localization and Delocalization in Quantum Chemistry

Part of the book series: Localization and Delocalization in Quantum Chemistry ((LDQC,volume 2))

Abstract

In order to provide a general background for the following discussions on the localizability and motion of electronic excitation, we attempt to review some of the basic concepts related to excitons in molecular crystals [1–7]. One of our purposes is to define rigorously, in the limit of a weak matter-radiation interaction, the light absorbing entities and the subsequent processes of electronic excitation energy transformation. We know that individual molecules can only be taken as the light absorbing entities under very special conditions, which must be discussed in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davydov, A. S.: Theory of Molecular Excitons, Mc Graw-Hill, New York, 1962.

    Google Scholar 

  2. Davydov, A. S.: Theory of Molecular Excitons, Plenum Press, New York, 1971. This reference is different in view-point from ref. 1.

    Google Scholar 

  3. Craig, D. P. and Walmsley, S. H.: Excitons in Molecular Crystals, Benjamin, New York, 1968.

    Google Scholar 

  4. Rice, S.A. and Jortner, J.: in Physics and Chemistry of the Organic Solid State (D. Fox, M. Labes, and A. Weissberger, eds.), Wiley-Interscience, New York, 1967, Vol. III, p. 199.

    Google Scholar 

  5. Robinson, G. W.: Ann. Rev. Phys. Chem. 21, 429 (1970).

    Article  CAS  Google Scholar 

  6. Sheka, E. F.: Usp. Fiz. Nauk. 104, 593 (1971).

    CAS  Google Scholar 

  7. Phillpott, M.R.: Adv. Chem. Phys. 23, 227 (1973).

    Article  Google Scholar 

  8. These modes may be seen in the following way: a molecular excitation to level lnn> may be represented by an electronic oscillator μon exp [i(En-En)t/h], where μon is a matrix element of an electronic dipole operator. The resonant electronic oscillators, associated with each site, couple weakly and form modes of electronic oscillations: μok exp [i(E k -E o )t/h].

    Google Scholar 

  9. These situations may be illustrated as follows [10, 11] (noting by ΔE ss the Stokes shift): in the weak coupling case the excitation relaxes in the molecular potential (ΔE ss > U) and vibrates many times before transfer to the neighbours occurs (ΔE> U), i.e. the nuclei of the molecule feel mainly the electronic potential of a free excited molecule [12]. In the strong coupling case by contrast, the excitation transfers to the neighbours before relaxing (U> ΔE) and before any vibation takes place (U>ΔE), i.e. the nuclei of each molecule vibrate in the same potential of a de-localized electronic state. These `pictures’ involving relaxation and transfer between identical molecules can be invoked only when an external perturbation of strength γ o> U destroys the excitonic coherence between the identical molecules (see conclusion of the present paper).

    Google Scholar 

  10. Simpson, W. T. and Peterson, D. L.: J. Chem. Phys. 26, 588 (1967).

    Article  Google Scholar 

  11. Forster, Th.: in Modern Quantum Chemistry (O. Sinanoglu, ed.), Academic Press, New York (1965), Vol. III, p. 93.

    Google Scholar 

  12. Witkowski, A. and Moffitt, M.: J. Chem. Phys. 33, 872 (1960).

    Article  CAS  Google Scholar 

  13. Ern, V. and Schott, M.: p. 249 in this volume.

    Google Scholar 

  14. Reineker, P. and Haken, H.: p. 285 in this volume.

    Google Scholar 

  15. Aslangul, Cl., Lemaistre, J.-P., and Kottis, Ph.: p. 209 in this volume.

    Google Scholar 

  16. Lemaistre, J.-P., Aslangul, Cl., and Kottis, Ph.: p. 239 in this volume.

    Google Scholar 

  17. Lipkin, H. J.: Quantum Mechanics,New Approaches to Selected Topics, North Holland Publ. Co., Amsterdam, 1973, Chap. 9 and 11.

    Google Scholar 

  18. Pines, D.: The Many Body Problem, Benjamin, New York, 1961.

    Google Scholar 

  19. Ziman, J. H.: Elements of Advanced Quantum Theory, Cambridge University Press, 1969, Chap. 4.

    Google Scholar 

  20. Cohen-Tannoudji, C.: Ann. Phys. 7, 423 (1962);

    CAS  Google Scholar 

  21. Novikov, L. N., Pokazanev, V. G., and Strotskii, G. V.: Usp. Fiz. Nauk. 101, 273 (1970).

    CAS  Google Scholar 

  22. Un(i, j) has no more or no less significance for motion of the excitation, than the integrals K u , in the molecular orbital theory, have significance for motion of the electrons between orbitals i and j.

    Google Scholar 

  23. Hopfield, J. J.: Phys. Rev. 112, 1555 (1958).

    Article  CAS  Google Scholar 

  24. Messiah, A.: Mécanique Quantique, Dunod, Paris, 1965, Chap. 21.

    Google Scholar 

  25. Cohen-Tannoudji, C., Diu, B., and Laloë, F.: Mécanique Quantique, Hermann, Paris 1973.

    Google Scholar 

  26. Levine, R. D.: Quantum Mechanics of Molecular Rate Processes,Clarendon Press, Oxford, 1969, Part 3.

    Google Scholar 

  27. Voltz, R.: in Organic Molecular Photophysics (J.B. Birks, ed.), John Wiley, New York, 1975, Chap. 5.

    Google Scholar 

  28. Shore, B. W.: Rev. Mod. Phys. 39, 439 (1967).

    Article  CAS  Google Scholar 

  29. Messiah, A.: Mécanique Quantique, Dunod, Paris, 1965, Chap. 6.

    Google Scholar 

  30. Aslangul, C. and Kottis, Ph.: Phys. Rev. B10, 4364 (1974).

    Google Scholar 

  31. Klein, G.: Thèse, Strasbourg, 1975 and references therein.

    Google Scholar 

  32. These transitions are better described by the non-adiabatic operator, i.e. the energy term neglected in the adiabatic approximation separating the intramolecular motions from the lower energy lattice motions [25].

    Google Scholar 

  33. The assumption p = 0 implies that we take a zero temperature assumption. This is sufficient in the present context and may be extended without essential difficulties to finite temperature conditions, cf. ref. 2, Chap. IV.

    Google Scholar 

  34. See in particular Fischer, J. and Rice, S. A.: J. Chem. Phys. 52, 2089 (1970);

    Article  CAS  Google Scholar 

  35. Grover, M. K. and Silbey, R.: J. Chem. Phys. 52, 2099 (1970).

    Article  CAS  Google Scholar 

  36. See for instance models for small polarons Holstein, T.: Ann. Phys. (N.Y.) 8, 343 (1959), part II;

    Article  CAS  Google Scholar 

  37. Sewell, G. L.: Phys. Rev. 129, 597 (1963).

    Article  CAS  Google Scholar 

  38. Haken, H. and Reineker, P.: in Excitons, Phonons and Magnons (A. Zahlan, ed.), Cambridge U.P., London, 1968.

    Google Scholar 

  39. See, for example, ref. 17, Chap. 11.

    Google Scholar 

  40. In a more general case, applying for instance at finite temperatures, the significance of the bracket < > must be generalized [37] as <A> = Tr ñA, where ñ represent the canonical distribution over the possible initial states ni; p>}. Another way to introduce finite temperature, through the amplitude of the parameter ã o, and its limitations, is discussed in refs. 15 and 28.

    Google Scholar 

  41. Maradudin, A. A.: in Elementary Excitations in Solids (A. A. Maradudin and G. F. Nardelli, eds.), Plenum Press, New York, 1969, p. 455.

    Google Scholar 

  42. Em, V., Suna, A., Tomkiewicz, Y., Avakian, P., and Groff, R. P.: Phys. Rev. B5, 3222 (1972).

    Google Scholar 

  43. This means, in particular, that indirect radiative transitions with simultaneous formation of excitations and phonons, are ignored.

    Google Scholar 

  44. See for example, Voltz, R.: Radiation Res. Rev. 1, 301 (1968).

    CAS  Google Scholar 

  45. Suna, A.: Phys. Rev. Bl, 1716 (1970).

    Google Scholar 

  46. Trlifaj, M.: Pure and Applied Chem. 37, 197 (1974).

    Article  CAS  Google Scholar 

  47. See for instance, Lemaistre, J.-P. and Kottis, Ph.: in Electron Spin Relaxation in Liquids (L. T. Muus and P. W. Atkins, eds.), Plenum Press, New York, 1972, p. 492.

    Google Scholar 

  48. See, for instance, Fujita, S.: Introduction to Non-Equilibrium Quantum Statistical Mechanics, Saunders, Philadelphia, 1966.

    Google Scholar 

  49. Zwanzig, R.: in Quantum Statistical Mechanics (P. H. E. Meijer, ed.), Gordon and Breach, New York, 1966, p. 139.

    Google Scholar 

  50. See for example, Kittel, C.: Elementary Statistical Physics, Wiley, New York, 1958, Chap. 32.

    Google Scholar 

  51. Zwanzig, R.: Ann. Rev. Phys. Chem. 16, 67 (1965).

    Article  CAS  Google Scholar 

  52. Abragam, A.: The Principles of Nuclear Magnetism, Oxford (1961) Chap. 10.

    Google Scholar 

  53. Note however that this crossed relaxation term disappears by symmetry for the dimers. (Cl. Aslangul, private communication).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Voltz, R., Kottis, P. (1976). Excitons and Electronic Collective Excitations in Molecular Organic Solids. In: Chalvet, O., Daudel, R., Diner, S., Malrieu, J.P. (eds) Localization and Delocalization in Quantum Chemistry. Localization and Delocalization in Quantum Chemistry, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1456-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1456-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1458-8

  • Online ISBN: 978-94-010-1456-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics