Skip to main content

Some Relations between Volume, Injectivity Radius, and Convexity Radius in Riemannian Manifolds

  • Chapter
Differential Geometry and Relativity

Part of the book series: Mathematical Physics and Applied Mathematics ((MPAM,volume 3))

Abstract

One knows how to attach to a compact riemannian manifold (M, g) three real numbers: its volume υ(g), its injectivity radius i(g) and its convexity radius c(g). The present article studies the following problems: do there exist universal constants λ(n), µ(n) such that υ(g)≥λ(n)i n(g), υ(g)≥µ(n)c n(g) for every riemannian manifold of dimension n? An affirmative answer is given to the second problem for any n but with an unsharp constant; an affirmative answer is given to the first problem only when n = 2 but with the sharp bound λ(2) = 4/π.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, R. L. and Crittenden, R. J., Geometry of Manifolds, Academic Press.

    Google Scholar 

  2. Berger, M., ‘Lectures on Geodesics in Riemannian Geometry’, Tata Institute, Bombay.

    Google Scholar 

  3. Berger, M., Cours de Géométrie, Éditions CEDIC.

    Google Scholar 

  4. Blatter, C., ‘Über Extremallängen auf geschlossenen Flächen’, Comment. Math. Hely. 35 (1961), 153–168.

    Article  MathSciNet  MATH  Google Scholar 

  5. Federer, H., Geometric Measure Theory, Springer.

    Google Scholar 

  6. Gromoll, D., Klingenberg, W., and Meyer, W., ‘Riemannsche Geometrie im Grossen’, Springer Lectures Notes in Mathematics no. 55.

    Google Scholar 

  7. Green, L. W., ‘Auf Wiedersehenflächen’, Ann. of Math. 78 (1963), 289–299.

    Article  MathSciNet  Google Scholar 

  8. Green, L. W., ‘A theorem of E. Hopf’, Michigan Math. J. 5, (1958), 31–34.

    Article  MathSciNet  MATH  Google Scholar 

  9. Hardy, G. H., Littlewood, J. E., and Polya, G., Inequalities,Cambridge University Press.

    Google Scholar 

  10. Lekerkerker, C. G., Geometry of Numbers,Wolters-Noordhoff.

    Google Scholar 

  11. Weinstein, A., ‘On the Volume of Manifolds All of Whose Geodesics Are Closed’, J. of Differential Geometry 9 (1974), 513–517.

    MATH  Google Scholar 

  12. Wolf, J. A., Spaces of Constant Curvature,2nd edition, J. Wolf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Cahen M. Flato

Rights and permissions

Reprints and permissions

Copyright information

© 1976 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Berger, M. (1976). Some Relations between Volume, Injectivity Radius, and Convexity Radius in Riemannian Manifolds. In: Cahen, M., Flato, M. (eds) Differential Geometry and Relativity. Mathematical Physics and Applied Mathematics, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1508-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1508-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1510-3

  • Online ISBN: 978-94-010-1508-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics