Skip to main content

Developmental Patterns of CO2 Exchange, Diffusion Resistance and Protein Synthesis in Leaves of Populus x euramericana

  • Conference paper
Environmental and Biological Control of Photosynthesis

Abstract

Patterns of gas exchange and protein synthesis were measured in developing leaves of clonal Populus x euramericana plants. Net photosynthesis and apparent photorespiration (Warburg effect) were zero in very young leaves, but then increased to maximum levels in recently mature leaves. Both processes declined in old leaves, but the decline in photosynthesis was more rapid. Mitochrondrial (dark) respiration decreased with leaf age and was less in the light than in the dark, except in very old leaves, where it increased sharply in the light. Diffusion resistance and CO2 compensation concentration declined to minimum levels in recently mature leaves; however, resistances increased markedly in older leaves, whereas CO2 compensation remained at a minimum. Soluble protein concentrations and incorporation of 14C-photosynthate into protein declined throughout leaf development. Protein turnover was slight in expanding leaves, but was substantial after leaves matured. Expanding leaves synthesized predominantly Fraction I protein, but formation of this protein was slight once leaves matured. The significance of these findings in relation to the developmental pattern of net photosynthesis in poplar leaves is discussed.

Journal Paper No. J-8006 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project 1872.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

RuDP:

ribulose-1,5-diphosphate

LPI:

leaf plastochron index

PPO:

2,5-diphenyloxazole

POPOP:

p-bis(2-(5-phenyloxazole)benzene

TCA:

trichloroacetic acid

References

  • Andrews, T.J., G.H. Lorimer & N.E. Tolbert (1973): Ribulose diphosphate oxygenase. I. Synthesis of phosphoglycolate by Fraction-1 protein of leaves. Biochemistry, 12: 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Bowes, G. & W.L. Ogren (1972): Oxygen inhibition and other properties of soybean ribulose-1, 5-diphosphate carboxylase. J. biol. Chem., 247: 2171–2176

    PubMed  CAS  Google Scholar 

  • Callow, J.A. (1974): Ribosomal RNA,Fraction I protein synthesis, and ribulose diphosphate carboxylase activity in developing and senescing leaves of cucumber. New Phytol., 73: 13–20.

    Article  CAS  Google Scholar 

  • Chapman, E.A. & D. Graham (1974): The effect of light on the tricarboxylic acid cycle in green leaves. I. Relative rates of the cycle in the dark and the light. Plant Physiol, 53: 879–885.

    Article  PubMed  CAS  Google Scholar 

  • D’Aoust, A.L. & D.T. Canvin (1973): Effect of oxygen concentration on the rates of photosynthesis and photorespiration of some higher plants. Can. J.Bot., 51: 457–464.

    Article  Google Scholar 

  • Dickmann, D.I. (1971a): Photosynthesis and respiration by developing leaves of cottonwood (Populus deltoïdes Bartr). Bot. Gaz., 132: 253–259.

    Article  Google Scholar 

  • Dickmann, D.I. (1971b): Chlorophyll, ribulose-1, 5-diphosphate carboxylase and Hill reaction activity in developing leaves of Populus deltoïdes. Plant Physiol., 48: 143–145.

    Article  CAS  Google Scholar 

  • Dickmann, D.I. & D.H. Gjerstad, (1973): Application to woody plants of a rapid method for determining leaf CO2 compensation concentrations. Can. J. forest Res., 3: 237–242.

    Article  CAS  Google Scholar 

  • Fair, P., J. Tew & C.F. Cresswell (1973): Enzyme activities associated with carbon dioxide exchange in illuminated leaves of Hordeum vulgare L. II. Effects of external concentrations of carbon dioxide and oxygen. Ann. Bot., 37: 1035–1039.

    CAS  Google Scholar 

  • Gordon, J.C. (1971): Changes in total nitrogen, soluble protein and peroxidases in the expanding leaf zone of eastern cottonwood. Plant Physiol., 47: 595–599.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Gil, R. & M. Schaedle (1973): Functional and structural changes in senescing Populus deltoides (Bartr.) chloroplasts. Plant Physiol. 51: 245–249.

    Article  PubMed  CAS  Google Scholar 

  • Huffacker, R.C. & L.W. Peterson (1974): Protein turnover in plants and possible means of its regulation. Annu. Rev. plant Physiol., 25: 363–392.

    Article  Google Scholar 

  • Isebrands, J.G. & P.R. Larson (1973): Anatomical changes during leaf ontogeny in Populus deltoides. Amer. J. Bot., 60: 199–208.

    Article  Google Scholar 

  • Jackson, W.A. & R.J. Volk (1970): Photorespiration. Annu. Rev. plant Physiol, 21: 385–432.

    Article  CAS  Google Scholar 

  • Kawashima, N. & S.G. Wildman (1970): Fraction I protein. Annu. Rev. plant Physiol, 21: 325–358.

    Article  CAS  Google Scholar 

  • Kisaki, T., S. Hirabayashi & N. Yano (1973): Effect of age of tobacco leaves on photosynthesis and photorespiration. Plant cell Physiol, 14: 505–514.

    CAS  Google Scholar 

  • Larson, P.R. & R.E. Dickson (1973): Distribution of imported 14C in developing leaves of eastern cottonwood according to phyllotaxy. Planta (Berl.), 111: 95–112.

    Article  CAS  Google Scholar 

  • Larson, P.R., R.E. Dickson & J.C. Gordon (1969): Leaf development, photosynthesis and 14C distribution in Populus deltoïdes seedlings. A mer. J. Bot., 56: 1058–1066.

    Article  CAS  Google Scholar 

  • Larson, P.R. & J.G. Isebrands (1971): The plastochron index as applied to developmental studies of cottonwood. Can. J. forest Res., 1: 1–11.

    Article  Google Scholar 

  • Larson, P.R. & J.G. Isebrands (1974): Anatomy of the primary-secondary transition zone in stems of Populus deltoïdes. Wood Sci., & Technol, 8: 11–26.

    Google Scholar 

  • Larson, P.R., J.G. Isebrands & R.E. Dickson (1972): Fixation patterns of 14C within developing leaves of eastern cottonwood. Planta (Berl.), 107: 301:314.

    Article  Google Scholar 

  • Lowry, O.H., N.J. Rosebrough, A.L. Fan & R.J. Randall (1951): Protein measurement with the Folin phenol reagent. J. biol Chem., 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Ludlow, M.M. (1970): Effect of oxygen concentration on leaf photosynthesis and resistances to carbon dioxide diffusion. Planta (Berl.), 91: 285–290.

    Article  CAS  Google Scholar 

  • Luukkanen, O. & T.T. Kozlowski (1972): Gas exchange in six Populus clones. Sivae Genet., 21:220–229.

    Google Scholar 

  • Mangat, B.S., W.B. Levin & R.G.S. Bidwell (1974): The extent of dark respiration in illuminated leaves and its control by ATP levels. Can J. Bot. 52: 673–681.

    Article  CAS  Google Scholar 

  • Neales, T.F., K.J. Treharne & P.F. Wareing (1971): A relationship between net photosynthesis, diffusive resistance and carboxylating enzyme activity in bean leaves. In Hatch, M.D., Osmond, C.B. & Slatyer, R.O. (Ed.): Photosynthesis & photorespiration pp. 89–96. Wiley-Interscience, New York.

    Google Scholar 

  • Ogren, W.L. & G. Bowes (1971): Ribulose diphosphate carboxylase regulates soybean photo-respiration. Nat. new Biol., 230: 159–160.

    PubMed  CAS  Google Scholar 

  • Peterson, L.W., G.E. Kleinkopf & R.C. Huffacker (1973): Evidence for lack of turnover of ribulose-1, 5-diphosphate carboxylase in barley leaves. Plant physiol., 51: 1042–1045.

    Article  PubMed  CAS  Google Scholar 

  • Salin, M.L. & P.H. Homann (1971): Changes of photorespiratory activity with leaf age. Plant Physiol, 43: 193–196.

    Article  Google Scholar 

  • Samish, Y. & D. Koller (1968):. Estimation of photorespiration of green plants and of their mesophyll resistance to CO2 uptake. Ann. Bot., 32: 687–694.

    Google Scholar 

  • Samish, Y., J.E. Pallas, Jr., G.M. Dornhoff & R.M. Shibles (1972): A reevaluation of soybean leaf photorespiration. Plant Physiol., 50: 28–30

    Article  PubMed  CAS  Google Scholar 

  • Smillie, R.M. & R.C. Fuller (1959): Ribulose-1, 5-diphosphate carboxylase activity in relation to photosynthesis by intact leaves and isolated chloroplats. Plant Physiol., 34: 651–656.

    Article  PubMed  CAS  Google Scholar 

  • Steer, B.T. (1971): The dynamics of leaf growth and photo synthetic capacity in Capsicum frutescens L.Ann. Bot. 35: 1003–1015.

    Google Scholar 

  • Wareing, P.F., M.M. Khalifa & K.J. Treharne (1968): Rate-limiting processes in photosynthesis at saturating light intensities. Nature 220: 453–457.

    Article  PubMed  CAS  Google Scholar 

  • Woolhouse, H.W. (1967): The nature of senescence in plants. Symp. Soc. exp. Biol, 21: 179–213.

    PubMed  CAS  Google Scholar 

  • Zelitch, I (1971): Photosynthesis, photorespiration and plant productivity. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Dr. W. Junk b.v., Publishers, The Hague

About this paper

Cite this paper

Dickmann, D.I., Gjerstad, D.H., Gordon, J.C. (1975). Developmental Patterns of CO2 Exchange, Diffusion Resistance and Protein Synthesis in Leaves of Populus x euramericana . In: Marcelle, R. (eds) Environmental and Biological Control of Photosynthesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1957-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1957-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-6193-179-9

  • Online ISBN: 978-94-010-1957-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics