Skip to main content

Nonlinear Scattering Theory

  • Conference paper
Scattering Theory in Mathematical Physics

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 9))

Abstract

Scattering theory compares the behavior in the distant future and past of a system evolving in time. It is called nonlinear if the system evolves in a nonlinear fashion. Consider a one-parameter group of operators on some linear space X:

$$ U(t)U(s) = U(t + s);U(o) = I $$

-∞ <t, s <+∞. We think of U(t)f as representing the state at time t beginning with a state f ε X at time zero. We are interested in the behavior of U(t)f as t → ±∞ and in the relationship between the behavior at +∞ and at −∞.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Chadam [1] Asymptotics for Du = m2 + G(x,t,u,ux,ut), Ann. Scuola Norm. Sup. Pisa, 26, (1972) 33.

    MathSciNet  MATH  Google Scholar 

  2. Asymptotic behavior of equations arising in quantum field theory, J. Applicable Anal., to be published.

    Google Scholar 

  3. D. G. Costa [1] The uniform behavior of solutions of linear hyperbolic systems for large times, Ph.D. thesis, Brown Univ., 1973.

    Google Scholar 

  4. C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura [1] Method for solving the Korteweg-de Vries equation, Phys. Rev. Letters 19, 1095–1097 (1967).

    Article  ADS  MATH  Google Scholar 

  5. R. M. Glassey [1] Blow-up theorems for nonlinear wave equations, Math. Zeit., to be published.

    Google Scholar 

  6. On the asymptotic behavior of non-linear wave equations, Trans. A.M.S., to be published.

    Google Scholar 

  7. K. Jörgens [1] Das Anfangswertproblem im Grossen för eine Klasse nichtlinearer Wellengleichungen, Math. Zeit. 77, 295–308 (1961).

    Article  MATH  Google Scholar 

  8. J. B. Keller [1] On solutions of nonlinear wave equations, Comm. Pure Appl. Math. 10, 523–530 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. D. Lax [1] Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math 21, 467–490 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  10. P. D. Lax and R. S. Phillips [1] Scattering Theory, Academic Press, New York, 1967.

    MATH  Google Scholar 

  11. P. D. Lax and R. S. Phillips Scattering theory for the acoustic equation in an even number of space dimensions, Indiana Math. J. 22, 101–134 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  12. H. A. Levine [1] Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt=-Au + F(u), to be published.

    Google Scholar 

  13. C. S. Morawetz [1] Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math 19, 439–444 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  14. C. S. Morawetz Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. A306, 291–296 (1968).

    MathSciNet  ADS  Google Scholar 

  15. C. S. Morawetz and W. A. Strauss [1] Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math. 25, 1–31 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  16. C. S. Morawetz and W. A. Strauss On a nonlinear scattering operator, Comm. Pure Appl. Math. 26, 47–54 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  17. to be published.

    Google Scholar 

  18. R. C. Newton [1] The inverse scattering problem, in this volume.

    Google Scholar 

  19. E. H. Roffman [1] Localized solutions of nonlinear wave equations, Bull. A.M.S. 76, 70–71 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  20. I. E. Segal [1] The global Cauchy problem for a relativistic scalar field with power interaction, Bull Soc. Math. France 91, 129–135 (1963).

    MathSciNet  MATH  Google Scholar 

  21. Quantization and dispersion for nonlinear relativistic equations, Proc. Conf. Math. Th. El. Particles, MIT Press, 79-108, 1966.

    Google Scholar 

  22. I. E. Segal Dispersion for nonlinear relativistic equations II, Ann. Sci. Ecole Norm. Sup. (4)1, 459–497 (1968).

    Google Scholar 

  23. W. A. Strauss [1] Decay and asymptotics for ⊟.u= F(u), J. Funct. Anal. 2, 409–457 (1968).

    Article  MATH  Google Scholar 

  24. W. A. Strauss On weak solutions of semi-linear hyperbolic equations, Anais Acad. Brasil. Ciencias 42, 645–651 (1970).

    Google Scholar 

  25. W. A. Strauss Decay of solutions of hyperbolic equations with localized nonlinear terms, Symposia Mathematica VII, 1st. Naz. Alta Mat., Rome, 339-355, 1971.

    Google Scholar 

  26. Dispersion of low-energy waves for two conservative equations, to be published.

    Google Scholar 

  27. W. von Wahl [1] Uber die klassische Lösbarkeit des Cauchy problems fur nichtlineare Wellengleichungen bei kleinen Anfangswerten und das asymptotische Verhalten der Lösungen, Math. Zeit. 114, 281–299 (1970).

    Article  MATH  Google Scholar 

  28. V. E. Zakharov and A. B. Shabat [1] Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, J. Exp. Th. Phys. 61, 118–134 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 D. Reidel Publishing Company, Dordrecht-Holland

About this paper

Cite this paper

Strauss, W.A. (1974). Nonlinear Scattering Theory. In: Lavita, J.A., Marchand, JP. (eds) Scattering Theory in Mathematical Physics. NATO Advanced Study Institutes Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2147-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2147-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2149-4

  • Online ISBN: 978-94-010-2147-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics