Skip to main content

Numerical Methods for the Simulation of Differential-Algebraic Process Models

  • Chapter
Methods of Model Based Process Control

Part of the book series: NATO ASI Series ((NSSE,volume 293))

Abstract

Dynamic simulation of rigorous chemical process models is one of the control engineering tools routinely applied during process analysis, control system evaluation and tuning. These simulations are either done by means of packaged process simulators or by special purpose simulation programs. The development of these programs or even the use of commercial simulators requires a profound knowledge of the mathematical properties of the differential-algebraic process models and the numerical algorithm for their analysis. This survey intends to provide an introduction to the analysis of differential-algebraic process models, on the current state of the art as well as on some future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marquardt, W. (1991) Dynamic process simulation — recent trends and future challenges, in Y. Arkun, W.H. Ray (eds) Chemical Process Control CPC-IV, CACHE, Austin, AICHE, New York, pp. 131–180.

    Google Scholar 

  2. Campbell, S.L. (1980) Singular Systems of Differential Equations, Pitman, London.

    MATH  Google Scholar 

  3. Campbell, S.L. (1982) Singular Systems of Differential Equations II, Pitman, London.

    MATH  Google Scholar 

  4. Brenan, K.E., Campbell, S.L. and Petzold, L.R. (1989) Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North-Holland, Elsevier, New York.

    MATH  Google Scholar 

  5. Dai L. (1989) Singular control systems, Lecture Notes in Control and Information Science, 118, Springer, Berlin.

    Google Scholar 

  6. Hairer E., Lubich, C. and Roche M. (1989) The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, Lecture Notes in Mathematics Vol. 1409, Springer-Verlag, Berlin.

    Google Scholar 

  7. Simeon, B., Führer, C., and Rentrop, P. (1991) Differential-algebraic equations in vehicle system dynamics, Surv. Math. Ind. I (1991), 1–37.

    Google Scholar 

  8. Pantelides, C.C., and P.I. Barton (1992) Equation-oriented dynamic simulation-current status and future perspectives, Comp. Chem. Engg., 17, S263–S285.

    Google Scholar 

  9. Boston, J.F., Britt, H.I., and M.T. Tayyabkhan (1993) Software: Tackling tougher tasks, Chem. Eng. Progr., November 1993, 38–49.

    Google Scholar 

  10. Pantelides, C.C., and H.I. Britt, (1994) Multipurpose process modeling environments, FOCAPD’94, Snowmass, CO, July 1994.

    Google Scholar 

  11. Marquardt, W. (1995) Towards a process modeling methodology. This volume.

    Google Scholar 

  12. Perregard, J., Pedersen, B.S., and Gani, R. (1992) Steady state and dynamic simulation of complex chemical processes, Trans. Inst. Chem. Eng. 70, Part A, 99–110.

    Google Scholar 

  13. Ramkrishna, D. (1985) The status of population balances. Reviews in Chemical Engineering 3, 49–95.

    Article  Google Scholar 

  14. Barton, P.I. and C.C. Pantelides (1994) The modeling of combined discrete/continuous processes, AIChE J., 40, 966–979.

    Article  Google Scholar 

  15. Pantelides, C.C. (1988) SpeedUp — recent advances in process simulation, Comp. Chem. Engg. 12, 745–755.

    Article  Google Scholar 

  16. Holl P., W. Marquardt and E.D. Gilles (1988) DIVA — A powerful tool for dynamic process simulation, Comput. Chem. Engng. 12, 421–425.

    Article  Google Scholar 

  17. Panreck, K., Jahnich, M., and F. Dörrscheidt (1994) Verwendung differentialalgebraischer Gleichungen zur verkopplungsorientierten Modellierung komplexer Prozesse, at — automatisierungstechnik 42, 239–247.

    MATH  Google Scholar 

  18. Kröner, A., P. Holl, W. Marquardt, and E.D. Gilles (1990) DIVA — An open architecture for dynamic simulation, Comput. Chem. Engng. 14, 1289–1295.

    Article  Google Scholar 

  19. Gani, R., E.L. Sorensen, and J. Perregard (1992) Design and analysis of chemical processes using DYNSIM. Ing. Eng. Chem. Res. 31, 244–254.

    Article  Google Scholar 

  20. Schiesser, W.E. (1991) The Numerical Method of Lines, Academic Press, San Diego.

    MATH  Google Scholar 

  21. Piela, P.C., T.G. Epperly, K.M. Westerberg and Westerberg, A.W. (1991) ASCEND: An object-oriented environment for modeling and analysis: the modeling language, Comput. Chem. Engg. 15, 53–72.

    Article  Google Scholar 

  22. Mattson, S.E. and M. Andersson (1994) Omola — an object-oriented modeling language in M. Jamshidi, C.J. Herget (eds) Recent Advances in Computer Aided Control Engineering, Elsevier, Amsterdam, in press.

    Google Scholar 

  23. Andersson, M. (1993) Modelling of combined discrete event and continuous dynamical systems, Proc. 12th IFAC World Congress, Sydney, Austsralia, Vol. IX, pp. 69–72.

    Google Scholar 

  24. Oh, M., and Pantelides, C.C. (1994) A modelling and simulation language for combined lumped and distributed parameter systems, Proc. of PSE’94, 37–44.

    Google Scholar 

  25. Pfeiffer, B.M. and W. Marquardt (1993) Symbolic semi-discretization of partial differential equation systems, Proc. SC’93, International IMACS Symposium on Symbolic Computation, Villeneuve d’Ascq, France, February 23–25, 1993.

    Google Scholar 

  26. Hyllseth, M. (1991) Dynamic Simulation of Heat Recovery Boilers Using the Sequential Modular Technique, PhD Thesis, Norwegian Institute of Technology, Thermal Energy Division.

    Google Scholar 

  27. Secchi, A.R., M. Morari, and E.C. Biscaia (1993) The waveform relaxation method in the concurrent dynamic process simulation, Comp. Chem. Engg. 17, 683–704.

    Article  Google Scholar 

  28. Gear, C.W. (1988) Differential-algebraic equation index transformation, SIAM J. Sci. Stat. Comp. 9, 39–47.

    Article  MathSciNet  MATH  Google Scholar 

  29. Rheinboldt, W.C. (1984) Differential-algebraic systems as differential equations on manifolds, Math. Comput. 43:168, 473–482.

    Article  MathSciNet  MATH  Google Scholar 

  30. März, R. (1991) Numerical methods for differential-algebraic equations, Acta Numerica, 141–198.

    Google Scholar 

  31. Reich S., (1990) On a geometrical interpretation of differential-algebraic equations, Circuits Systems Signal Process, 9, 367–382.

    Article  MathSciNet  MATH  Google Scholar 

  32. Reich, S. (1991) On an existence and uniqueness theory for nonlinear differential-algebraic equations, Circuits Systems Signal Process 10 343–359.

    Article  MathSciNet  MATH  Google Scholar 

  33. Geerts, T. (1993) Solvability conditions, consistency, and weak consistency for linear differential-algebraic equations and time-invariant singular systems: the general case, Linear Algebra and its Applications, 181, 111–130.

    Article  MathSciNet  MATH  Google Scholar 

  34. Bujakiewicz, P. (1994) Maximum weighted matching for high index differential algebraic equations, PhD Thesis, Technical University of Delft, The Netherlands.

    Google Scholar 

  35. Verghese, G.C., Levy, B.C., and Kailath, T. (1981) A generalized state-space for singular systems, IEEE Trans. Aut. Control AC-26 811–831.

    Article  MathSciNet  Google Scholar 

  36. Rouchon, P., Fliess, M., and Levine, J. (1992) Kroneckerșs canonical forms for nonlinear implicit differential systems, 2nd IFAC Workshop on System Structure and Control, Prague, 3–5 September 1992.

    Google Scholar 

  37. Gear, C.W. (1990) Differential algebraic equations, indices, and integral algebraic equations, SIAM J. Numer. Anal. 27, 1527–1534.

    Article  MathSciNet  MATH  Google Scholar 

  38. Unger, J., Kröner, and W. Marquardt (1995) Structural analysis of differential-algebraic equations systems — theory and applications, Comput. Chem. Engg., in press.

    Google Scholar 

  39. Sargent, R.W.H. (1992) Systems of differential-algebraic equations, Paper pres, at NATO-ASI Batch Processing and Systems Engineering, Antalya, Turkey, 1992.

    Google Scholar 

  40. Pantelides C.C., D. Gritsis, K.R. Morison, and R.W.H. Sargent (1988) The mathematical modeling of transient systems using differential-algebraic equations, Comp. Chem. Engng. 12, 449–454.

    Article  Google Scholar 

  41. Campbell, S.L. (1983) Consistent initial conditions for singular nonlinear systems, Circuits, Systems & Signal Processing 2, 45–55.

    Article  MATH  Google Scholar 

  42. Unger, J., and Marquardt W. (1991) Structural analysis of differential-algebraic equation systems, in L. Piugjaner and A. Espuna (eds) Computer-Aided Process Engineering, Proceedings of COPE-91, Barcelona, Spain, Elsevier Sc. Publ., Amsterdam, pp. 241–246.

    Google Scholar 

  43. Gear, C.W., and Petzold, L. (1984) ODE methods for the solution of differential/algebraic systems, SIAM J. Numer. Anal. 21, 716–728.

    Article  MathSciNet  MATH  Google Scholar 

  44. Bachmann, R., Brüll, L., Mrziglod, Th., and Pallaske, U. (1990) On methods for reducing the index of differential algebraic equations, Comput. Chem. Engng. 14, 1271–1273.

    Article  Google Scholar 

  45. Fliess, M., Levine, J., and Rouchon, P. (1993) Index of an implicit time-varying linear differential equation: a noncommutative linear algebraic approach, Linear Algebra and its Applications 186, 59–71.

    Article  MathSciNet  MATH  Google Scholar 

  46. Unger J. (1990) Structural Analysis of Differential-Algebraic Equation Systems, M.S.-Thesis, Deptartment of Chemical Engineering, University of Wisconsin, Madison.

    Google Scholar 

  47. Pantelides C.C. (1988) The consistent initialization of differential-algebraic systems, SIAM J. Sci. Stat. Comp. 9, 213–231.

    Article  MathSciNet  MATH  Google Scholar 

  48. Mattson, S.E., G. Söderlind, (1993) Index reduction in differential-algebraic equations using dummy derivatives, SIAM I. Sci. Stat. Comput. 14, 677–692.

    Article  Google Scholar 

  49. Leimkuhler, B., L.R. Petzold, and C.W. Gear (1991) Approximation methods for the consistent initialization of differential-algebraic equations, SIAM J. Numer. Anal. 28, 205–226.

    Article  MathSciNet  MATH  Google Scholar 

  50. Löffler, H.P., and W. Marquardt, W. (1991) Order reduction for nonlinear differential-algebraic process models, J. Process Control 1, 32–40.

    Article  Google Scholar 

  51. Ponton J.W. and P.J. Gawthrop (1991) Systematic construction of dynamic models for phase equilibrium processes, Comp. Chem. Engng. 15, 803–808.

    Article  Google Scholar 

  52. Heinichen, H. (1993) Dynamische Simulation von Reaktivdestillationskolonnen, Student Thesis, Lehrstuhl für Prozestechnik, RWTH Aachen, 1993.

    Google Scholar 

  53. Fliess, M., Levine, J., and Rouchon, P. (1992) Index of a general differential-algebraic implicit system, Proc. MTNS’91, Kobe, Japan, Mita Press, 1992, 289–294.

    Google Scholar 

  54. Gani R. and Cameron T. (1992) Modelling for dynamic simulation of chemical processes — the index problem, Chem. Engng. Sci. 47, 1311–1315.

    Article  Google Scholar 

  55. Lefkopoulos, A., and M.A. Stadtherr (1993) Index analysis of unsteady-state chemical process systems — I. An algorithm for problem formulation, Comput. Chem. Engng. 17, 399–413.

    Article  Google Scholar 

  56. Lucas, P., Isambert, A., Depeyre, D., Cuille, P., and Rossiny, P. (1988) Dynamic simulation and control strategy of a continuous separation system with unsteady inputs, CHEMDATA 88, 13–18 June 1988, Göteborg, Sweden.

    Google Scholar 

  57. Grimaldi, R.P. (1989) Discrete and Combinatorial Mathematics — An Applied Introduction, 2nd Ed., Addison-Wesley, Reading, Chap. 15.

    MATH  Google Scholar 

  58. Duff I.S. (1981) On algorithms for obtaining a maximal transversal, ACM Trans. Math. Softw. 7, 315–330.

    Article  Google Scholar 

  59. Duff I.S. and C.W. Gear (1986) Computing the structural index, SIAM J. Alg. Disc. Meth. 7, 594–603.

    Article  MathSciNet  MATH  Google Scholar 

  60. Bujakiewicz, P., and van den Bosch, P. (1994) Determination of perturbation index of a DAE with maximum weighted matching algorithm, Proc. IEEE/IFAC Joint Symposium on Computer-Aided Control System Design, Tucson, 1994.

    Google Scholar 

  61. Lefkopoulos, A., and M.A. Stadtherr (1993) Index analysis of unsteady-state chemical process systems — II. Strategies for determining the overall flowsheet index, Com-put. Chem. Engng. 17, 415–430.

    Article  Google Scholar 

  62. Sincovec, R.F., Erisman, A.M., Yip, E.L., and Epton, M.A. (1981) Analysis of descriptor systems using numerical algorithms, IEEE Trans. Automatic Control AC-26, 139–147.

    Article  MathSciNet  Google Scholar 

  63. Petzold L.R. (1982) Differential/algebraic equations are not ODE’s, SIAM J. Sci. Stat. Comp. 3, 367–384.

    Article  MathSciNet  MATH  Google Scholar 

  64. Gear, C.W. (1971) Simultaneous numerical solution of differential-algebraic equations, IEEE Trans. Circuit Theory CT-18, 89–95.

    Article  Google Scholar 

  65. Keiper, J.B., and Gear, C.W. (1991) The analysis of generalized backwards difference formula methods applied to Hessenberg form differential-algebraic equations, SIAM J. Numer. Anal. 28, 833–858.

    Article  MathSciNet  MATH  Google Scholar 

  66. Petzold L.R., (1983) A Description of DASSL: A differential/algebraic system solver, in R.S. Stepleman et al. (eds.) Scientific Computing, North-Holland, Amsterdam, pp. 65–68.

    Google Scholar 

  67. Gritsis, D., Pantelides, C.C., and R.W.H. Sargent (1988) The dynamic simulation of transient systems described by index two differential-algebraic equations, Proc. Int. Symp. PSE’88, Sydney, 132–140.

    Google Scholar 

  68. Feng, A., Holland, C.D., and Gallun, S.E. (1984) Development and comparison of a generalized semi-implicit Runge-Kutta method with Gear’s method for systems of coupled differential and algebraic equations, Comp. Chem. Engg. 8, 51–59.

    Article  Google Scholar 

  69. Cameron, I.T. (1983) Solution of differential-algebraic systems using diagonally implicit Runge-Kutta methods, IMA J. Num. Anal. 3, 273–289.

    Article  MATH  Google Scholar 

  70. Logsdon, J.S., and Biegler, L.T. (1989) Accurate solution of differential-algebraic optimization problems Ind. Eng. Chem. Res. 28, 1628–1639.

    Article  Google Scholar 

  71. Deuflhard P., E. Hairer, and J. Zugck (1987) One-step and extrapolation methods for differential-algebraic systems, Numer. Math. 51, 501–516.

    Article  MathSciNet  MATH  Google Scholar 

  72. Lubich, C. (1989) Linearly implicit extrapolation methods for differential-algebraic systems, Numer. Math. 55, 197–211.

    Article  MathSciNet  MATH  Google Scholar 

  73. Deuflhard, P., Nowak, U., Extrapolation integrators for quasilinear implicit ODEs, in P. Deuflhard, B. Engquist (eds) Large Scale Scientific Computing, Birkhäuser, Basel, pp. 37–50.

    Google Scholar 

  74. Smith, G.J., and Morton W. (1988) Dynamic simulation using an equation-oriented flowsheeting package, Comput. Chem. Engng. 12, 469–473.

    Article  Google Scholar 

  75. Ascher, U.M. and Petzold, L.R. (1992) The numerical solution of delay-differential-algebraic equations of retarded type, University of Minnesota, Computer Science, TR 92–58, October 1992.

    Google Scholar 

  76. Chung, Y., and Westerberg, A.W. (1990) A proposed numerical algorithm for solving nonlinear index problems, Ind. Eng. Chem. Res., 29, 1234–1239.

    Article  Google Scholar 

  77. Chung, Y., and Westerberg, A.W. (1992) Solving a class of near index problems as perturbations of index problems, Ind. Eng. Chem. Res., 31, 2593–2603.

    Article  Google Scholar 

  78. Griewank, A. (1989) On automatic differentiation, in M. Iri, K. Tanabe (eds.) Mathematical Programming: Recent Developments and Applications, Kluwer Academic Publishers, 1989, pp. 83–108.

    Google Scholar 

  79. Jarvis, R.B., and Pantelides, C.C. (1992) A differentiation-free algorithm for solving high-index DAE Systems, AIChE 1992 Ann. Meeting, Miami Beach, November 1–6, 1992, Paper 146g.

    Google Scholar 

  80. Hanke, M. (1991) On the asymptotic representation of a regularization approach to nonlinear semi-explicit higher index differential-algebraic equations, IMA J. Appi. Math. 46, 225–245.

    Article  MathSciNet  MATH  Google Scholar 

  81. Gear, C.W. (1984) Efficient step size control for output and discontinuities, Trans. Society Computer Simulation 1, 27–31.

    Google Scholar 

  82. Joglekar, G.S., and Reklaitis, G.V. (1990) A simulator for batch and semi-continuous processes, Comput. Chem. Engng. 14, 1289–1295.

    Article  Google Scholar 

  83. Preston, A.J., Berzins, M., Algorithms for the location of discontinuities in dynamic simulation problems, Comput. Chem. Engng. 15, 701–713.

    Google Scholar 

  84. Kröner, A., W. Marquardt, and E.D. Gilles (1992) Computing consistent initial conditions for differential-algebraic equations, Comput. Chem. Engng. 16, Supplement, 131–138.

    Article  Google Scholar 

  85. Kröner, A., W. Marquardt, and E.D. Gilles (1994) Steady states as consistent initial conditions of DAEs, submitted for publication.

    Google Scholar 

  86. Brüll, L., Pallaske, U. (1992) On differential-algebraic equations with discontinuities, Z. angew. Math. Phys. 43, 319–327.

    Article  MathSciNet  MATH  Google Scholar 

  87. Kröner, A., W. Marquardt, and E.D. Gilles (1994) Computation of consistent initial conditions for differential-algebraic equations, submitted for publication.

    Google Scholar 

  88. Majer, C., Marquardt, W., and E.D. Gilles (1994) Reinitialization of DAEs after discontinuities. Submitted to ESCAPE-5, Bled, 1995.

    Google Scholar 

  89. Zitney, S.E., Bruii, L., Lang, L., and Zeller, R. (1994) Plantwide dynamic simulation on supercomputers: modeling a Bayer distillation process. Paper pres, at FOCAPD’94, July 1994, Snowmass, CO.

    Google Scholar 

  90. Duff, I.S., Erisman, A.M., Reid, J.K. (1986) Direct Methods for Sparse Matrices, Oxford University Press, Oxford.

    MATH  Google Scholar 

  91. Dissertation, Universität Stuttgart, Germany, in preparation.

    Google Scholar 

  92. Zitney, S.E., Stadtherr, M.A. (1993) Frontal algorithms for equation-based chemical process flowsheeting on vector and parallel computers, Comp. Chem. Engg. 17, 319–338.

    Article  Google Scholar 

  93. Freund, R.W., Golub, G.H., Nachtigal, N.M. (1991) Iterative solution of linear systems, Acta Numerica, 57–100.

    Google Scholar 

  94. Brown, P.N., Hindmarsh, A.C., Petzold, L.R., (1994) Using Krylov methods in the solution of large-scale differential-algebraic systems, SIAM J. Sci. Comput., in press.

    Google Scholar 

  95. Macchietto, S. (1985) Solution techniques for processes described by mixed sets of equations and procedures, in F.A. Perris (ed) Proc. PSE’85, Inst. Chem. Engineers Symp. Ser. 92, Pergamon Press, Oxford, pp. 377–389.

    Google Scholar 

  96. Averick, B.M., More, J. J., Bischof, C.H., Carle, A., Griewank, A., (1994), Computing large sparse Jacobian matrices using automatic differentiation. In press.

    Google Scholar 

  97. Nowak, U. (1993) Dynamic sparsing in stiff extrapolation methods. IMPACT of Comp. in Science and Engg. 5, 53–74.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marquardt, W. (1995). Numerical Methods for the Simulation of Differential-Algebraic Process Models. In: Berber, R. (eds) Methods of Model Based Process Control. NATO ASI Series, vol 293. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0135-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0135-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4061-7

  • Online ISBN: 978-94-011-0135-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics