Skip to main content

Part of the book series: Theory and Decision Library ((TDLB,volume 32))

Abstract

The purpose of this paper is to outline a common framework for a diversity of monoidal structures which constitute the basis of various papers in fuzzy set theory. The most frequent structures we encounter in the literature are given by Hey ting algebras, MV-algebras and semigroup structures on the real unit interval (so-called t-norms ([27]). Heyting algebras appear in papers looking from an intuitionistic point of view at fuzzy set theory, MV-algebras form the base for a positivistic approach to fuzzy set theory (cf. Poincaré's paradox and related topics in [15]), and finally t-norms are prefered by statisticians working with a probabilistic understanding of fuzzy set theory. All these monoidal structures have in common the following basic properties : Integrality, commutativity of the semigroup operation * and the existence of a binary operation which is adjoint to the given operation *. Therefore we claim that the structure of integral, commutative, residuated l-monoids forms the appropriate level of generality for our intension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. P. Belluce. Semi-simple algebras of infinite valued logic and bold fuzzy set theory, Canad. J. Math. 38 (1986), 1356–1379.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. P. Belluce. Semi-simple and complete MV-algebras, Algebra Universalis 29 (1992), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. P. Belluce. α-complete MV-algebras, in "Non-Classical Logics and Their Applications to Fuzzy Subsets : A Handbook of the Mathematical Foundations of Fuzzy Set Theory", (Eds. U. Höhle and E. P Klement) (Kluwer, Boston 1994).

    Google Scholar 

  4. G. Birkhoff. Lattice Theory, Amer. Math. Soc. Colloquium Publications, third edition (Amer. Math. Soc., RI, 1973).

    Google Scholar 

  5. C. C. Chang. Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. C. Chang. A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74–80.

    MathSciNet  MATH  Google Scholar 

  7. J. C. Fodor. Contrapositive symmetry of fuzzy implications, Technical Report 1993/1, Eötvös Loränd University, Budapest 1993.

    Google Scholar 

  8. O. Frink. New algebras of logic, Amer. Math. Monthly 45 (1938), 210–219.

    Article  MathSciNet  Google Scholar 

  9. L. Fuchs. Über die Ideale arithmetischer Ringe, Commentarii Math. Helv. 23 (1949), 334–341.

    Article  MATH  Google Scholar 

  10. J. Y. Girard. Linear logic, Theor. Comp. Sci. 50 (1987), 1–102.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Gößwald-Bernsau. Kommutative, residuierte, verbandsgeordnete Monoide und Halbeinfachheit, Diplomarbeit, Wuppertal 1994.

    Google Scholar 

  12. S. Gottwald. Mehrwertige Logik (Akademie-Verlag, Berlin 1989).

    MATH  Google Scholar 

  13. L. S. Hay. Axiomatization of infinite-valued predicate calculus, Journal of Symbolic Logic 28 (1963), 77–86.

    Article  MathSciNet  Google Scholar 

  14. U. Höhle. Editorial of the Special Issue: Mathematical Aspects of Fuzzy Set Theory, Fuzzy Sets and Systems 40 (1991), 253–256.

    Article  Google Scholar 

  15. U. Höhle and L. N. Stout. Foundations of fuzzy sets, Fuzzy Sets and Systems 40 (1991), 257–296.

    Article  MathSciNet  MATH  Google Scholar 

  16. U. Höhle. M-valued sets and sheaves over integral cl-monoids, in "Applications of catgeory Theory to Fuzzy Subsets", p. 33–72, (Eds. S. E. Rodabaugh et al.) (Kluwer, Bosten 1992).

    Chapter  Google Scholar 

  17. U. Höhle. Presheaves over GL-monmoids, in "Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory," (Eds. U. Höhle and E. P. Klement) (Kluwer, Boston 1995).

    Google Scholar 

  18. U. Höhle. Monoidal Logic in "Foundations in Fuzzy Systems" (Eds. R. Kruse et al.) (Vieweg 1995).

    Google Scholar 

  19. H. MacNeille. Partially ordered sets, Trans. Amer. Math. Soc. 42 (1937), 416–460.

    Article  MathSciNet  Google Scholar 

  20. P.T. Johnstone. Stone Spaces (Cambridge University Press, Cambridge 1982).

    MATH  Google Scholar 

  21. F. Lacava. Sulle L-algebre iniettive, Bolletino UMI (7) 3-A (1989), 319–324.

    Google Scholar 

  22. D. Mundici. Interpretation of AF C*-algebras in Lukasiewicz sentential logic, Functional Analysis 65 (1986), 15–63.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. B. Paalman de Miranda. Topological Semigroups (Amsterdam : Math. Centrum 1964).

    MATH  Google Scholar 

  24. H. Rasiowa and R. Sirkoski. A proof of the completeness theorem of Gödel, Fundamenta Math. 37 (1950), 193–200.

    MATH  Google Scholar 

  25. H. Rasiowa and R. Sikorski. The Mathematics of Metamathematics, third edition (Polish Scientific Publishers, Warszawa 1970).

    Google Scholar 

  26. K. I. Rosenthal. Quantales and Their Applications, Pitman Research Notes in Mathematics 234 (Longman, Burnt Mill, Harlow 1990).

    Google Scholar 

  27. B. Schweizer and A. Sklar. Probabilistic Metric Spaces (North-Holland, Amsterdam 1983).

    MATH  Google Scholar 

  28. R. Sikorski. Booelan Algebras (Springer-Verlag, Berlin 1964).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Höhle, U. (1995). Commutative, residuated 1—monoids. In: Höhle, U., Klement, E.P. (eds) Non-Classical Logics and their Applications to Fuzzy Subsets. Theory and Decision Library, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0215-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0215-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4096-9

  • Online ISBN: 978-94-011-0215-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics