Skip to main content

Quantum Tunneling of Vortices in High-T c Superconductors: Magnetic Relaxation Experiments in TlBaCaCuO Compounds

  • Chapter
Quantum Tunneling of Magnetization — QTM ’94

Part of the book series: NATO ASI Series ((NSSE,volume 301))

  • 289 Accesses

Abstract

Magnetic relaxation experiments in TlBaCaCuO superconductors (2212 and 2223 single phases, polycrystalline and thin film materials) are reported. The results give evidence of a crossover from thermally to non-thermally activated flux motion. The temperature independent magnetic relaxation rates (below ≃ 6 K and ≃ 3 K for the 2212 and 2223 phase respectively) compare well with the values calculated according to the theories of flux motion by quantum tunneling. The effect of anisotropy and magnetic field on the quantum creep rate is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P. W. and Kim, Y. B. (1964) Hard superconductivity: Theory of the motion of Abrikosov flux lines, Rev. Mod. Phys. 36, 39.

    Article  ADS  Google Scholar 

  2. Mota, A. C., Pollini, A., Visani, P., Müller, K. A. and Bednorz, J. G. (1987) Low-field magnetic relaxation effects in high-Tc superconductors Sr-La-Cu-O and Ba-La-Cu-O, Phys. Rev. B 36, 4011.

    Article  ADS  Google Scholar 

  3. Mota, A. C., Pollini, A., Visani, P., Müller, K. A. and Bednorz, J. G. (1988) Relaxation effects in high-Tc superconductors, Physica Scrlpta 37, 823.

    Article  ADS  Google Scholar 

  4. Mota, A. C., Pollini, A., Visani, P., Müller, K. A. and Bednorz, J. G. (1988) Relaxation of the magnetization in high-Tc superconductors, Physica C 153–155, 67.

    Article  Google Scholar 

  5. Hamzic, A., Fruchter, L. and Campbell, I. A. (1990) Non-activated magnetic relaxation in a high-Tc superconductor, Nature (London) 345, 515.

    Article  ADS  Google Scholar 

  6. FVuchter, L., Malozemoff, A. P., Campbell, I. A., Sanchez, J., Konczykowski, M., Griessen, R. and Holtzberg, F. (1991) Low-temperature magnetic relaxation in YBa2Cu3O7-δ: Evidence for quantum tunneling of vortices, Phys. Rev. B 43, 8709.

    Article  ADS  Google Scholar 

  7. Mitin, A. V. (1987) Zh. Eksp. Teor. Fiz. 93, 590.

    Google Scholar 

  8. Mitin, A. V. (1987) Temperature dependences of flux creep and critical current in molybdenum sulfides, Sov. Phys. JETP 66, 335.

    Google Scholar 

  9. Mota, A. C., Juri, G., Visani, P., Pollini, A., Teruzzi, T., Aupke, K. and Hilti, B. (1991) Flux motion by quantum tunneling, Physica C 185–189, 343.

    Article  Google Scholar 

  10. Pollini, A., Mota, A. C., Visani, P., Pittini, R., Juri, G., Teruzzi, T. and Franse, J. J. M.(1991) Novel magnetic relaxation effects in superconducting UPt3 single crystals, Physica C 185–189,2625.

    Article  Google Scholar 

  11. Caldeira, A. O. and Leggett, A. J. (1981) Influence of dissipation on quantum tunneling in macroscopic systems, Phys, Rev, Lett., 46, 211.

    Article  ADS  Google Scholar 

  12. Caldeira, A. O. and Leggett, A. J. (1983) Quantum tunneling in a dissipative system, Ann, Phys. (N.Y.) 149, 374.

    Article  ADS  Google Scholar 

  13. Blatter, G., Geshkenbein, V. B. and Vinokur, V. M. (1991) Quantum collective creep, Phys. Rev. Lett. 66, 3297.

    Article  ADS  Google Scholar 

  14. Blatter, G. and Geshkenbein, V. B. (1991) Quantum collective creep in anisotropic superconductors,Physica C 185–189, 2351.

    Article  Google Scholar 

  15. Blatter, G. and Geshkenbein, V. B. (1993) Quantum collective creep: Effects of anisotropy, layering and finite T, Phys. Rev. B 47, 2725.

    Article  ADS  Google Scholar 

  16. Farrell, D. E., Rice, J. P., Ginsberg, D. M. and Liu, J. Z. (1990) Experimental evidence of a dimensional crossover in YBa2Cu3O7-δ, Phys. Rev. Lett. 64, 1573.

    Article  ADS  Google Scholar 

  17. Laborde, O., Monceau, P., Potel, M., Padiou, J., Gougeon, P., Levet, J. C. and Noel, H. (1989) Anisotropic properties of single crystals of (T1O)mBa2Ca2Cu3O8, Physica C 162–164, 1619.

    Article  Google Scholar 

  18. Matsubara, I., Tanigawa, H., Ogura, T., Yamashita, H., Kinoshita, M. and Kawai, T.(1992) Upper critical field and anisotropy of the high-Tc Bi2Sr2Ca2Cu3Ox phase, Phys. Rev. B 45, 7414.

    Article  ADS  Google Scholar 

  19. Busch, R., Ries, G., Werthner, H., Kreiselmeyer, G. and Saemann-Ischenko, G. (1992) New aspects of the mixed state from six-terminal measurements on Bi2Sr2CaCu2Ox single crystals, Phys. Rev. Lett. 69, 522.

    Article  ADS  Google Scholar 

  20. Farrell, D. E., Beck, R. G., Booth, M. F., Allen, C. J., Bukowski, E. D. and Ginsberg, D. M. (1990) Superconducting effective mass anisotropy in Tl2Ba2CaCu2Ox, Phys. Rev. B 42, 6758.

    Article  ADS  Google Scholar 

  21. Feigel’man, M. V., Geshkenbein, V. B. and Larkin, A. I. (1990) Pinning and creep in layered superconductors, Physica C 167, 177.

    Article  ADS  Google Scholar 

  22. Vinokur, V. M., Kes, P. H. and Koshelev, A. E. (1990) Flux pinning and creep in very anisotropic high temperature superconductors, Physica C 168, 29.

    Article  ADS  Google Scholar 

  23. Prost, D., Fruchter, L., Campbell, I. A., Motohira, N. and Konczykowski, M. (1993) Quantum tunneling of flux lines in single crystal Bi2Sr2CaCu2O8 with columnar defects, Phys. Rev. B 47, 3457.

    Article  ADS  Google Scholar 

  24. Aupke, K., Teruzzi, T., Visani, P., Amann, A., Mota, A. C. and Zavaritsky, V. N. (1993) Quantum creep in a Bi2Sr2CaCu2Ox single crystal, Physica C 209, 255.

    Article  ADS  Google Scholar 

  25. Garcia, A., Zhang, X. X., Testa, A. M., Fiorani, D. and Tejada, J. (1992) Experimental evidence of quantum tunneling in TlBaCaCuO, J. Phys.: Conies. Matter 4, 10341.

    Article  ADS  Google Scholar 

  26. Tejada, J., Chudnovsky, E. M. and Garcia, A. (1993) Quantum tunneling of vortices in theTl2CaBa2Cu2O8 superconductor, Phys. Rev. B 47, 11552.

    Article  ADS  Google Scholar 

  27. Kopelevich, Y., Moehlecke, S. and Torres, J. H. S. (1993) Flux line melting in Bi2Sr2Ca2CU3O10,Phys. Rev. B 49, 1495.

    Article  ADS  Google Scholar 

  28. Mota, A. C., Pollini, A., Juri, G., Visani, P. and Hilti, B. (1990) Fast decay of supercurrents in high-Tc, heavy fermion and organic superconductors, Physica A 168, 298.

    Article  ADS  Google Scholar 

  29. Moehlecke, S. and Kopelevich, Y. (1994) Magnetic field dependent quantum flux creep in Bi2Sr2Ca2Cu3O10, Physica C 222, 149.

    Article  ADS  Google Scholar 

  30. Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. and Levit, S. (1993) Pis’ma Zh. Eks. Teor. Fiz. 57, 699.

    Google Scholar 

  31. Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. and Levit, S. (1993) Hall tunneling of vortices in high-Tc superconductors, Sov. Phys. JETP Lett. 57, 711.

    ADS  Google Scholar 

  32. Ao, P. and Thouless, D. J. (1994) Tunneling of quantized vortices: Roles of pinning and dissipation, Phys, Rev. Lett. 72, 132.

    Article  ADS  Google Scholar 

  33. Grabert, H., Weiss, U. and Hänggi, P. (1984) Quantum tunneling in dissipative systems at finite temperatures, Phys. Rev. Lett. 52, 2193.

    Article  MathSciNet  ADS  Google Scholar 

  34. Parkin, S. S. P., Lee, V. Y., Engler, E. M., Nazzal, A. I., Huang, T. C, Gorman, G., Savoy, R. and Beyers, R. (1988) Bulk superconductivity at 125 K in Tl2Ba2Ca2Cu3Ox, Phys. Rev. Lett. 60, 2539.

    Article  ADS  Google Scholar 

  35. Xin, Y., Li, Y. F., Gu, D. X., Pederson, D. O. and Sheng, Z. Z. (1991) Optimum preparation and elemental addition for Tl-based 2223 phase Tl2Ba2Ca2Cu3O10-δ, Physic C 184, 185.

    Article  ADS  Google Scholar 

  36. Thompson, J. R., Brynestad, J., Kroeger, D. M., Kim, Y. C., Sekula, S. T., Christen, D. K. and Specht, E. D. (1989) Superconductivity, intergrain and intragrain current densities of Tl2Ba2Ca2Cu3O10+δ and Tl2Ba2CaCu2O8+δ materials, Phys. Rev. B 39, 6652.

    Article  ADS  Google Scholar 

  37. Manzel, M., Bruchlos, H., Steinbeiβ, E., Eick, T., Klinger, M., Fuchs, J. and Kley, B. (1992) TiBaCaCuO-films [sic] for passive microwave devices, Physica C 201, 237.

    Article  Google Scholar 

  38. Qui, C. Y. and Shih, I. (1988) Formation of Tl-Ca-Ba-Cu-O films by diffusion of Tl into rfsputtered Ca-Ba-Cu-O, Appl. Phys. Lett. 53, 1122.

    Article  ADS  Google Scholar 

  39. Harshman, D. R. and Mills, Jr., A. P. (1992) Concerning the nature of high-Tc superconductivity:Survey of experimental properties and implications for interlayer coupling, Phys. Rev. B 45, 10684.

    Article  ADS  Google Scholar 

  40. Tinkham, M. and Lobb, C. J. (1989) Physical properties of the new superconductors, Solid State Phys. 42, 91.

    Article  Google Scholar 

  41. Clem, J. (1988) Granular and superconducting-glass properties of the high-temperature superconductors, Physica C 153–155, 50.

    Article  Google Scholar 

  42. Jung, J., Mohamed, M. A.-K. and Franck, J. P. (1990) Josephson vortex-current interaction in Y1Ba2Cu3O7 at low magnetic fields, J. Magn. Magn. Mater. 90–91, 689.

    Article  Google Scholar 

  43. Zhang, X. X., Garcia, A., Tejada, J., Xin, Y. and Wong, K. W. (1994) Experimental evidence of quantum tunneling of 2D vortices up to 10 K in bulk Tl2Ba2Ca2Cu3O10 superconductor, Physica C 232, 99.

    Article  ADS  Google Scholar 

  44. Garcia, A., Zhang, X. X., Tejada, J., Manzel, M. and Bruchlos, H. (1994) Low-temperature quantum relaxation of single 2D vortices in an epitaxial Tl2Ba2Ca2Cu3O10 thin-film, Phys. Rev. B 50, in press.

    Google Scholar 

  45. Uji, S., Aoki, H., Takebayashi, S., Tanaka, M. and Hashimoto, M. (1993) Flux creep by quantum tunneling in YBa2Cu3O7-δ, Physica C 207, 112.

    Article  ADS  Google Scholar 

  46. Mota, A. C, Juri, G., Pollini, A., Aupke, K., Teruzzi, T., Visani, P. and Hilti, B. (1992) Quantum and classical creep in high-Tc and organic superconductors, Physica Scripta 45, 69.

    Article  ADS  Google Scholar 

  47. See also Fruchter, L., Prost, D. and Campbell, I. A. (1994) Flux tunneling rate in superconductors (Proceedings of M2S-HTSC IV International Conference Grenoble 1994), Physica C, in press.

    Google Scholar 

  48. Daemen, L. L., Bulaevskii, L. N., Maley, M. P. and Coulter, J. Y. (1993) Critical current of Josephson-coupled systems in perpendicular fields, Phys. Rev. Lett. 70, 1167.

    Article  ADS  Google Scholar 

  49. Daemen, L. L., Bulaevskii, L. N., Maley, M. P. and Coulter, J. Y. (1993) Josephson-coupled systems in perpendicular magnetic fields, Phys. Rev. B 47, 11291.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fiorani, D., Garcia, A., Zhang, X.X., Testa, A.M., Tejada, J. (1995). Quantum Tunneling of Vortices in High-T c Superconductors: Magnetic Relaxation Experiments in TlBaCaCuO Compounds. In: Gunther, L., Barbara, B. (eds) Quantum Tunneling of Magnetization — QTM ’94. NATO ASI Series, vol 301. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0403-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0403-6_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4180-5

  • Online ISBN: 978-94-011-0403-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics