Skip to main content

The Dimension of the Tensor Product of Two Particular Pullbacks

  • Chapter
Abelian Groups and Modules

Part of the book series: Mathematics and Its Applications ((MAIA,volume 343))

Abstract

All rings considered in this paper are commutative, with identity and ring-homomorphisms are unital. If R is a ring, then dim(R) denotes the Krull dimension of R, that is the supremum of lengths of chains of prime ideals of R. A domain D is said to have valuative dimension n (in short, dim v (D) = n) if each valuation overring of D has dimension at most n and there exists a valuation overring of D of dimension n. If no such integer n exists, D is said to have infinite valuative dimension [11]. For nondomains, dim v (R) = sup dim v (R/P) : P ∈ Spec(R). Recall further that a finite-dimensional domain D is a Jaffard domain if dim v (D) = dim, (D). As the class of Jaffard domains is not stable under localization, a domain D is defined to be a locally Jaffard domain if D P is a Jaffard domain for each prime ideal P of D (cf. [1]).

Supported in part by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (60% Fund.)

Supported by Consiglio Nazionale delle Ricerche and Terza Università degli Studi di Roma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson D. F., Bouvier A., Dobbs D. E., Fontana M. and Kabbaj S., On Jaffard domains, Expo. Math. 6 (1988), 145–175.

    MathSciNet  MATH  Google Scholar 

  2. Bastida E. and Gilmer R., Overrings and divisorial ideals of rings of the form D+M, Michigan Math. J. 20 (1973), 79–95.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouvier A. and Kabbaj S., Examples of Jaffard domains, J. Pure Appl. Algebra 54 (1988), 155–165.

    Google Scholar 

  4. Brewer J. W., Montgomery P. R., Rutter E. A. and Heinzer W. J., Krull dimension of polynomial rings, Lecture Notes in Math. 311, Springer, Berlin-New York, 1972, pp. 26–45.

    Google Scholar 

  5. Cahen P.J., Couples d’anneaux partageant un idéal, Arch. Math. 51 (1988), 505–514.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cahen P.J., Construction B,I,D et anneaux localement ou residuellement de Jaffard, Arch. Math. 54 (1990), 125–141.

    Article  MATH  Google Scholar 

  7. Fontana M., Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. 123 (1980), 331–355.

    Article  MathSciNet  MATH  Google Scholar 

  8. Fontana M., Sur quelques classes d’anneaux divisés, Rend. Sem. Mat. Milano 51 (1981), 173–200.

    Article  MathSciNet  Google Scholar 

  9. Gilmer R., “Multiplicative ideal theory”, Marcel Dekker, New York, 1972.

    Google Scholar 

  10. Girolami F., A F-rings and locally Jaffard rings, in Proc. Fès Conference “Commutative ring theory”, Lecture Notes Pure Appl. Math. 153, Marcel Dekker, 1994, pp. 151–161.

    MathSciNet  Google Scholar 

  11. Jaffard P., Théorie de la dimension dans les anneaux de polynômes, Mém. Sc. Math. 146, Gauthier-Villars, Paris 1960.

    Google Scholar 

  12. Kabbaj S., La formule de la dimension pour les S-domaines forts universels, Boll. Un. Mat. Ital. Algebra e Geometria 5 (1980), 145–161.

    MathSciNet  Google Scholar 

  13. Sharp R. Y., The dimension of the tensor product of two field extensions, Bull. London Math. Soc. 9 (1977), 42–48.

    Google Scholar 

  14. Sharp R. Y. and Vamos P., The dimension of the tensor product of a finite number of field extensions, J. Pure Appl. Algebra 10 (1977), 249–252.

    Google Scholar 

  15. Wadsworth A. R., The Krull dimension of tensor products of commutative algebras over a field, J. London Math. Soc. 19 (1979), 391–401.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zariski O. and Samuel P., “Commutative Algebra”, Vol. II, Van Nostrand, New York, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Girolami, F., Kabbaj, SE. (1995). The Dimension of the Tensor Product of Two Particular Pullbacks. In: Facchini, A., Menini, C. (eds) Abelian Groups and Modules. Mathematics and Its Applications, vol 343. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0443-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0443-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4198-0

  • Online ISBN: 978-94-011-0443-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics