Skip to main content

A Computer Simulation Study of the Relation between Lipid and Probe Behaviour in Bilayer Systems

  • Conference paper
Modelling of Biomolecular Structures and Mechanisms

Abstract

Computer simulations are presented of the behaviour of elongated probe Molecules anchored to the interface of bilayers of dipalmitoylphosphatidylcholine (DPPC) above the phase transition of the hydrocarbon chains. The simulations mimic the behaviour of the fluorescent probe 1-[4-(trimethyl-ammonio)phenyl]-6-phenyl- 1,3,5-hexatriene (TMA-DPH) and Cholestane spin label (CSL) in the DPPC bilayers. In contrast to any experimental technique the simulations follow the behaviour of both the lipid molecules and the probe within the bilayer structure. Thus the relation between the behaviour of the probe molecules and the order and dynamics of the lipid chains can be studied in detail. We find that the presence of probe molecules, at the low concentrations used experimentally, causes only a marginal perturbation in the intrinsic properties of the lipid chains. The simulations presented substantiate the conventional prescription for describing the orientational behaviour of probe molecules in lipid bilayers in terms of a local effective orienting potential. They show further that the potential arises from the confinement of the probe molecules between long segments of lipid chains in elongated free-volume cavities within the bilayer structure. Consequently the description of the rotational dynamics needs to be refined in order to take into account the combined effect of the restricted free rattling motions of the probes within the free-volume cavities and the orientations of the cavities themselves relative to the normal to the bilayer plane. The time scale of the motions of the cavities within the bilayer is determined by the rotational motions of long segments of the lipid chains. These observations justify the use of rigid probe molecules such as TMA-DPH and Cholestane spin labels for monitoring the orientational order and dynamics in lipid bilayer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Zannoni, A. Arcioni, and P. Cavatorta: Chem. Phys. Lipids 32, 179 (1983).

    Article  CAS  Google Scholar 

  2. P. L. Nordio and U. Segre: ‘Rotational Dynamics’, in The Molecular Physics of Liquid Crystals ,G. R. Luckhurst and G. W. Gray (Eds.), Academic Press, New York, p. 411 (1979).

    Google Scholar 

  3. M. Evans, G. J. Evans, W. T. Coffey, and P. Grigolini: Molecular Dynamics ,Wiley, New York (1982).

    Google Scholar 

  4. J. H. Freed: ‘Theory of Slow Tumbling ESR Spectra for Nitroxides’, Spin labelling; Theory and Applications ,L. Berliner (Ed.), Academic Press, New York (1976).

    Google Scholar 

  5. L. J. Korstanje, E. E. van Faassen, and Y. K. Levine: Biochim. Biophys. Acta 982, 196 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. H. van Langen, G. van Ginkel, and Y. K. Levine: Liquid Cryst. 3, 1301 (1988).

    Article  Google Scholar 

  7. H. van Langen, Y. K. Levine, M. Ameloot, and H. Pottel: Chem. Phys. Lett. 140, 394 (1987).

    Article  Google Scholar 

  8. D. A. van der Sijs, E. E. van Faassen, and Y. K. Levine: Chem. Phys. Lett. 216, 559 (1993).

    Article  Google Scholar 

  9. U. A. van der Heide, M. A. M. J. van Zandvoort, E. E. van Faassen, G. van Ginkel, G., and Y. K. Levine: J. Fluorescence 4, 269 (1993).

    Google Scholar 

  10. C. Polnaszek and J. H. Freed: J. Phys. Chem. 79, 2283 (1975).

    Article  CAS  Google Scholar 

  11. H. Eviatar, E. E. van Faassen, Y. K. Levine, and D. I. Hoult: Chem. Phys. 181, 369 (1994).

    Article  CAS  Google Scholar 

  12. D. A. van der Sijs and Y. K. Levine: J. Chem. Phys. 100, 6783 (1994).

    Article  Google Scholar 

  13. Y. K. Levine, A. Kolinski, and J. Skolnick: J. Chem. Phys. 98, 7581 (1993).

    Article  CAS  Google Scholar 

  14. Y. K. Levine: Molec. Phys. 78, 619 (1993).

    Article  CAS  Google Scholar 

  15. A. Rey, A. Kolinski, J. Skolnick, and Y. K. Levine: J. Chem. Phys. 79, 1240 (1992).

    Article  Google Scholar 

  16. M. E. Rose: Elementary Theory of Angular Momentum ,Wiley, New York (1957).

    Google Scholar 

  17. A. Seelig and J. Seelig: Biochemistry 13, 4839 (1974).

    Article  PubMed  CAS  Google Scholar 

  18. L. J. Korstanje, E. E. van Faassen, and Y. K. Levine: Biochim. Biophys. Acta 980, 225 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Eviatar, H., Van Der Heide, U.A., Levine, Y.K. (1995). A Computer Simulation Study of the Relation between Lipid and Probe Behaviour in Bilayer Systems. In: Pullman, A., Jortner, J., Pullman, B. (eds) Modelling of Biomolecular Structures and Mechanisms. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0497-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0497-5_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4222-2

  • Online ISBN: 978-94-011-0497-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics