Skip to main content

Process modelling and microstructure

  • Chapter
High-temperature Structural Materials
  • 387 Accesses

Abstract

Among the many routes which are used for the processing of high-temperature materials, solidification plays a key role. Several modelling tools are now available for the simulation of the interconnected macroscopic phenomena associated with any casting process (heat exchange, mould filling, convection, stress development, etc.). Based upon finite-difference (FD) or finite-element (FE) techniques, these models solve the continuity equations of mass, energy, momentum, solute species, averaged over the liquid and solid phases. As such, macroscopic models do not account for the detailed phenomena occurring at the scale of the microstructure. For that reason, a stochastic cellular automaton (CA) model has been developed recently for the prediction of the grain structure formation in solidification processes, in particular during the investment casting of superalloys. Such a microscopic model considers the heterogeneous nucleation of grains at the surface of the mould and in the bulk of the liquid, the growth kinetics and preferential growth directions of the dendrites and the microsegregation. The microscopic CA model has been coupled to FE heat flow computations in order to predict the grain structure at the scale of a casting. It is shown that microstructural features and crystallographic textures can be simulated as a function of the casting conditions and alloy composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, M. P., Srolovitz, D. J., Grest, G. S. & Sahni, P. S. 1984 Computer simulation of grain growth. I. Kinetics. Acta metal. 32, 783–791.

    CAS  Google Scholar 

  • Bennon, W. D. & Incropera, F. P. 1987 A continuum model for momentum, heat and species transport in binary solid—liquid phase change systems. Int. J. Heat Mass Transfer 30, 2161–2187.

    Article  CAS  Google Scholar 

  • Chalmers, B. 1964 Principles of solidification. New York: Wiley.

    Google Scholar 

  • Combeau, H. & Lesoult, G. 1993 Simulation of freckles formation and related segregation during directional solidification of metallic alloys. In Modeling of casting, welding and advanced solidification processes VI (ed. T. S. Piwonka et al.), pp. 201–208. The Minerals, Metals and Materials Society.

    Google Scholar 

  • Ganesan, S. & Poirier, D. R. 1990 Conservation of mass and momentum for the flow of interdendritic liquid during solidification. Metall. Trans. B 21, 173–181.

    Google Scholar 

  • Gandin, Ch.-A., Rappaz, Ch. A. & Tintillier, R. 1993 Three-dimensional probabilistic simulation of solidification grain structures: application to superalloys precision castings. Metall. Trans. A 24, 467–479.

    Google Scholar 

  • Gandin, Ch.-A., Rappaz, M. & Tintillier, R. 1994 Three-dimensional simulation of the grain formation in investment casting. Metall. Trans. A 25, 629–635.

    Google Scholar 

  • Gandin, Ch.-A. & Rappaz, M. 1994 A coupled finite element—cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta metall. mater. 42, 2233–2246.

    Article  CAS  Google Scholar 

  • Gandin, Ch.-A., Rappaz, M., West, D. & Adams, B. L. 1995 Grain texture evolution during the columnar growth of dendritic alloys. Metall. Trans. A 26, 1543–1552.

    Google Scholar 

  • Hunt, J. D. 1984 Steady state columnar and equiaxed growth of dendrites and eutectic. Mater. Sci. Engng 65, 75–83.

    Article  CAS  Google Scholar 

  • Kobayashi, S. 1988 Solute redistribution during solidification. J. Cryst. Growth 88, 87–96.

    Article  CAS  Google Scholar 

  • Kurz, W. & Fisher, D. J. 1989 Fundamentals of solidification. Aedermannsdorf: Trans. Tech. Pub.

    Google Scholar 

  • Kurz, W., Giovanola, B. & Trivedi, R. 1986 Theory of microstructural development during rapid solidification. Acta metall. mater. 34, 823–830.

    Article  CAS  Google Scholar 

  • Mo, A. 1994 An internal variable description of solidification suitable for macrosegregation modeling. Metall. Trans. B 25, 597–605.

    Google Scholar 

  • Ni, J. & Beckermann, C. 1991 A volume-averaged two-phase model for transport phenomena during solidification. Metall. Trans. B 22, 349–361.

    Google Scholar 

  • Rappaz, M. & Thévoz, Ph. 1987 Solute diffusion model for equiaxed dendritic growth: analytical solution. Acta metall. mater. 35, 2929–2933.

    Article  CAS  Google Scholar 

  • Rappaz, M. 1989 Modelling of microstructure formation in solidification processes. Int. Mater. Rev. 34, 93–123.

    CAS  Google Scholar 

  • Rappaz, M. & Voller, V. 1990 Modelling of micro-macrosegregation in solidification processes. Metall. Trans. A 21, 749–753.

    Google Scholar 

  • Rappaz, M. & Gandin, Ch.-A. 1993 Probabilistic modelling of microstructure formation in solidification processes. Acta metall. mater. 41, 345–360.

    Article  CAS  Google Scholar 

  • Sato, T., Kurz, W. & Ikawa, K. 1987 Experiments on dendrite branch detachment in the succinonitrile—canphor alloy. Trans. Jpn Inst. Metals 28, 1012–1021.

    CAS  Google Scholar 

  • Thévoz, Ph., Rappaz, M. & Desbiolles, J. L. 1990 3-MOS: a general FEM code for the prediction of microstructures in castings. In Light metals (ed. Ch. M. Bickert), pp. 975–984. The Minerals, Metals and Materials Society.

    Google Scholar 

  • Toffoli, T. & Margolus, N. 1991 Cellular automata machines. MIT Press.

    Google Scholar 

  • Turnbull, D. 1950 Kinetics of heterogeneous nucleation. J. chem. Phys. 18, 198–203.

    Article  CAS  Google Scholar 

  • Voller, V. R., Brent, A. D. Si Prakash, C. 1989 The modelling of heat, mass and solute transport in solidification systems. Int. J. Heat Mass Transfer 32, 1719–1731.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

R. W. Cahn A. G. Evans M. McLean

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rappaz, M., Gandin, CA. (1996). Process modelling and microstructure. In: Cahn, R.W., Evans, A.G., McLean, M. (eds) High-temperature Structural Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0589-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0589-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4261-1

  • Online ISBN: 978-94-011-0589-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics