Skip to main content

Numerical modeling of damage, property degradation and life prediction in fatigue of composite laminates

  • Chapter
Numerical Analysis and Modelling of Composite Materials
  • 414 Accesses

Abstract

Fatigue is a process which causes premature failure or damage of a material subjected to repeated loading. It is a complicated physical process which is difficult to accurately describe and model on a microscopic level. For composite materials the challenge goes beyond reaching an understanding of behavior comparable to the level obtained for homogeneous materials. Composite materials contain numerous internal boundaries which separate constituent materials that have different responses and different resistance to fatigue loading. The properties and behavior of composite materials are greatly influenced and completely controlled by the geometric and constitutive details of microvolumes of materials in the region of damage events [1]. From a damage mechanics point of view, the fatigue process generally occurs at the microscale and differs significantly from the global response. Because these microevents ultimately control the degradation of properties and performance, it is generally necessary to add micromechanical analysis to the macromechanical analysis commonly used for classical treatments. Numerical approaches are often needed to implement the micromechanical analysis which represents the local damage events during fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reifsnider, K.L. Fatigue of Composite Materials. Elsevier Science Publishers BV, New York, 1990.

    Google Scholar 

  2. Fong, J.T., Fatigue Mechanisms (ASTM STP 675). ASTM, Philadelphia, PA, 1979.

    Google Scholar 

  3. Lauraitis, K.N., Fatigue of Fibrous Composite Materials (ASTM STP 723). ASTM, Philadelphia, PA, 1981.

    Book  Google Scholar 

  4. Hashin, Z., Analysis of damage in composite materials. In Yielding, Damage, and Failure of Anisotropic Solids (EGF5) (ed. Boehler, J.P.). Mechanical Engineering Publications, London, (1990) pp. 3–31.

    Google Scholar 

  5. Rosen, B.W., Tensile failure of fibrous composites. AIAA J., 2(11) (1964), pp. 1985–1991.

    Article  Google Scholar 

  6. Harlow, D.G. and Pheonix, S.L., Probability distribution for the strength of composite materials. I: Two-level bounds. Int. J. Fract., 17 (1981) 321–336.

    Article  Google Scholar 

  7. Gao, Z., Reifsnider, K.L. and Carman, G., Strength prediction and optimization of composites with statistical fiber flaw distributions. J. Comp. Mater., 26(11) (1992) 1678–1705.

    Article  CAS  Google Scholar 

  8. Gao, Z. and Reifsnider, K.L., Tensile failure of composites: influence of interface and matrix yielding. J. Comp. Res. Technol., 14(4) (1992) 201–210.

    Article  CAS  Google Scholar 

  9. Gao, Z., Reliability of composite materials under general plane loadings. J. Reinforced Plast. Comp., 12(4) (1993) 430–456.

    Article  Google Scholar 

  10. Gao, Z., Effects of fiber-matrix interfacial shear strength on reliability of composite materials. Comp. Interfaces, 1(6) (1993) 481–497.

    CAS  Google Scholar 

  11. Steif, P.S., Stiffness reduction due to fiber breakage. J. Comp. Mater., 18 (1984) 153–172.

    Article  Google Scholar 

  12. Gottesman, T., Hashin, Z. and Brull, M.A., Effective elastic moduli of cracked fiber composites. In Advances in Composite Materials (ed. Bunsell, A.).

    Google Scholar 

  13. Laws, N., Dvorak, G.J. and Hejazi, M., Stiffness changes in unidirectional composites caused by crack systems. Mech. Mater., 2 (1983) 123–137.

    Article  Google Scholar 

  14. Highsmith, A.L. and Reifsnider, K.L., Stiffness-reduction mechanisms in composite laminates. In Damage in Composite Materials (ASTM STP 775) (ed. Reifsnider, K.L.) ASTM, Philadelphia, PA, 1982, pp. 103–117.

    Google Scholar 

  15. Reifsnider, K.L., Some fundamental aspects of the fatigue and fracture response of composite materials, Proceedings of the 14th Annual Meeting of the Society of Engineering Science (ed.). Lehigh University, Bethlehem, PA, Nov. 1977, pp. 343–384.

    Google Scholar 

  16. Reifsnider, K.L., Analysis of fatigue damage in composite laminates. Int. J. Fatigue., 3 (1980) 3–11.

    Article  Google Scholar 

  17. Jones, R.M., Mechanics of Composite Materials. Scripta Book Company, Washington, DC, 1975, pp. 152–154.

    Google Scholar 

  18. Reifsnider, K.L. and Jamison, R., Fracture of fatigue loaded composite laminates. Int. J. Fatigue, 5 (1982) 187–197.

    Article  Google Scholar 

  19. Dvorak, G.J. and Laws, N., Analysis of matrix cracking in composite laminates: theory and experiment. In Structures, Materials, Dynamics and Space Station Propulsion (eds Yuceoglu, U. and Hesser, R.). ASME, New York, 1984, pp. 69–78.

    Google Scholar 

  20. Hashin, Z., Analysis of cracked laminates: a variational approach. Mech. Mater., 4 (1985) 121–136.

    Article  Google Scholar 

  21. Gao, Z. and Zhao, H., Life predictions of metal matrix composite laminates under isothermal and nonisothermal fatigue. J. Comp. Mater., 29(9) (1995) 1142–1148.

    Article  CAS  Google Scholar 

  22. Chou, P.C. and Wang, A.S.D., (AFWAL-TR-84-4004). Materials Laboratory, Wright-Patterson AFB, OH, 1984.

    Google Scholar 

  23. Neu, R.W., Thermomechanical fatigue in metal matrix composites: mechanistic life prediction model and experiments. In Final Report, Contributive Research and Development (Vol. 60). Wright Laboratory Materials Directorate, Wright-Patterson AFB, Dayton, OH, 1992.

    Google Scholar 

  24. Gabb, T.P., Gayda, J. and MacKay, R.A., Isothermal and nonisothermal fatigue behavior of a metal matrix composite. J. Comp. Mater., 24 (1990) 667–686.

    Article  CAS  Google Scholar 

  25. Johnson, W.S., Lubowinski, S.J. and Highsmith, A.L., Mechanical characterization of unnotched SCS6/Ti-15-3 metal matrix composites at room temperature. In Thermal Behavior of Metal Matrix and Ceramic Matrix Composites (ASTM STP 1080) (eds Kennedy, J.M., Moeller, H.H. and Johnson, W.S.). ASTM, Philadelphia, PA, 1990, pp. 193–218.

    Chapter  Google Scholar 

  26. Neu, R.W. and Nicholas, T., Effect of laminate orientation on the thermomechanical fatigue behavior of a titanium matrix composite. J. Comp. Technol. Res., 16(3) (1994) 214–224.

    Article  CAS  Google Scholar 

  27. Coker, D., Ashbaugh, N.E. and Nicholas, T., Analysis of thermomechanical cyclic behavior of unidirectional metal matrix composites. In Thermomechanical Fatigue Behavior of Materials (ASTM STP 1186) (ed. Sehitoglu, H.). ASTM, Philadelphia, PA, 1993, pp. 50–59.

    Chapter  Google Scholar 

  28. Kroupa, J.L., Neu, R.W., Nicholas, T., Coker, D., Robertson, D.D. and Mall, S., A comparison of analysis tools for predicting the inelastic cyclic response of cross-ply titanium matrix composites. Presented at the ASTM Symposium on Life Prediction Methodology for Titanium Matrix Composites, Hilton Head, SC, March, 1994.

    Google Scholar 

  29. Bahei-El-Din, Y.A., Thermal and mechanical behavior of ceramic and metal matrix composites. In (ASTM STP 1080) Thermal Behavior of Metal Matrix and Ceramic Matrix Composites (eds Kennedy, J.M., Hoeller, H.H. and Johnson, W.S.) ASTM, Philadelphia, PA, 1990, pp. 20–39.

    Google Scholar 

  30. Mirdamadi, M., Johnson, W.S., Bahei-El-Din, Y.A. and Castelli, M.G., Analysis of thermomechanical fatigue of unidirectional titanium metal matrix composites (NASA TM 104105). NASA Langley Research Center, Hampton, VA, 1991.

    Google Scholar 

  31. Hwang, W. and Han, K.S., Cumulative damage models and multi-stress fatigue life prediction. J. Comp. Mater., 20 (1986) 125–153.

    Article  CAS  Google Scholar 

  32. Palmgren, A., Die lebensadauer von Kugellagern. Z. Vereines Deutcher Ingenieure, 68 (1924) 339–341.

    Google Scholar 

  33. Miner, M.A., Cumulative damage in fatigue. ASME J. Appl. Mech., 12 (1945) A159–164.

    Google Scholar 

  34. Richard, F.E. and Newmark, N.M., An hypothesis for the determination of cumulative damage in fatigue. ASTM Proc., 48 (1948) 767–800.

    Google Scholar 

  35. Marco, S.M. and Starkey, W.L., A concept of fatigue damage. Trans. ASME, 76 (1954) 626–662.

    Google Scholar 

  36. Henry, D.L., A theory of fatigue-damage accumulation in steel. Trans. ASME, 11 (1955) 913–918.

    Google Scholar 

  37. Corten, H.T. and Dolan, T.I., Cumulative fatigue damage. In Proceedings of the International Conference on Fatigue of Metals (ed.). IME ASME, New York, 1956.

    Google Scholar 

  38. Gatts, R.R., Application of a cumulative damage concept to fatigue. Trans. ASME, 83 (1961) 529–540.

    Google Scholar 

  39. Marin, J., Mechanical Behavior of Engineering Materials. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.

    Google Scholar 

  40. Lemaitre, J. and Plumtree, A., Application of damage concepts to predict creep fatigue failures. J. Mater. Engng Technol., 101 (1979) 284–292.

    Article  CAS  Google Scholar 

  41. Socie, D.F., Fash, J.W. and Leckie, F.A., A continuum damage model for fatigue analysis of cast iron. In ASME International Conference on Advances in Life Prediction Methods New York, 1983, pp. 53–64.

    Google Scholar 

  42. Kim, J.K. and Mai, Y.W., Micromechanics of fibre — matrix interface and fracture of advanced composites with engineered interfaces. In Fracture Mechanics (Vol. 25) (ASTM STP 1220) (eds Erdogan, F. and Hartranft, R.J.). ASTM, Philadelphia, PA, 1995, in press.

    Google Scholar 

  43. Han, K.S. and Hwang, W., Fatigue of composite-fatigue modulus concept and life prediction. J. Comp. Mater., 20 (1986) 154–165.

    Article  Google Scholar 

  44. Whitworth, H.A., Cumulative damage in composites. ASME J. Engng Mater. Technol., 112 (1990) 358–361.

    Article  Google Scholar 

  45. Cole, C.K., Cornish, R.H. and Elliot, J.P. (1966) Effect of voids and structural defects on the compressive fatigue of glass reinforced plastics, 21st Annual RP/CI Confer, sec. 17-C.

    Google Scholar 

  46. Dibenedetto, A.T. and Salee, G., Fatigue crack propagation in graphite fiber reinforced nylon 66. Polym. Engng Sci., 19 (1979) 512–518.

    Article  CAS  Google Scholar 

  47. Wang, S.S. and Chim, E.S.M., Fatigue damage and degradation in random short-fiber SMC composites. J. Comp. Mater., 17 (1983) 114–134.

    Article  CAS  Google Scholar 

  48. Wang, S.S., Goetz, D.P. and Corten, H.T., Shear fatigue degradation and fracture of random short-fiber SMC composite. J. Comp. Mater., 18 (1984) 2–20.

    Article  CAS  Google Scholar 

  49. Yang, J.N. and Jones, D.L., The effect of load sequence on the statistical fatigue of composites. AIAA J., 18 (1980) 1525–1531.

    Article  Google Scholar 

  50. Chou, P.C., A cumulative damage rule for fatigue of composite materials. In Modern Developments in Composite Materials and Structures (ed. Vinson, J.R.). ASME, New York, 1979, pp. 443–455.

    Google Scholar 

  51. Johnsen, S.E.J, and Doner, M., A statistical simulation model of miner’s rule. J. Engng Mater. Techol., 103 (1981) 113–117.

    Google Scholar 

  52. Broutman, L.J. and Sahu, S., A new theory to predict cumulative fatigue damage in fiberglass reinforced plastics. In Composite Materials: Testing and Design (Second Conference) (ASTM STP 497) (ed.). Philadelphia, PA, 1972, pp. 170–188.

    Chapter  Google Scholar 

  53. Yang, J.N. and Jones, D.L., Fatigue of graphite/epoxy laminates under dual stress levels. Comp. Technol. Rev., 4(3) (1982) 63–70.

    Article  Google Scholar 

  54. Hashin, Z., Cumulative damage theory for composite materials: residual life and residual strength method. Comp. Sci. Technol., 23 (1985) 1–19.

    Article  Google Scholar 

  55. Reifsnider, K.L. and Stinchcomb, W.W., Composite Materials: Fatigue and Fracture (ASTM STP 907) (ed. Hahn, H.T.). ASTM, Philadelphia, PA, 1986, pp. 298–313.

    Chapter  Google Scholar 

  56. Rotem, A., Residual strength after fatigue loading. Int. J. Fatigue, 10(1) (1988) 27–31.

    Article  CAS  Google Scholar 

  57. Adam, T., Gathercole, N., Harris, B. and Reiter, H., Fatigue life predictions for carbon fibre reinforced composite materials under variable loading conditions. In Proceedings of The Second International Symposium on Composite Materials and Structures (eds Loo, T.T. and Sun, C.T.). Beijing, 1992, pp. 248–253.

    Google Scholar 

  58. Ryder, J.T. and Crossman, F.W., A study of stiffness, residual strength and fatigue life relationships for composite laminates (NASA CR-172211). NASA Langley Research Center, Hampton, VA, 1983.

    Google Scholar 

  59. Gao, Z., A cumulative damage model for fatigue life of composite laminates. J. Reinforced Plast. Comp., 13(2) (1994) 128–141.

    Article  CAS  Google Scholar 

  60. Majumdar, B.S. and Newaz, G.M., Thermomechanical fatigue of a quasi-isotropic metal matrix composite. In Composite Materials: Fatigue and Fracture (Vol. 3) (ASTM STP 1110) (ed. O’Brien, T.K.) ASTM, Philadelphia, PA, 1991, pp. 732–752.

    Chapter  Google Scholar 

  61. Johnson, W.S., Damage development in titanium metal-matrix composites subjected to cyclic loading. Composites, 24(3) (1993) 187–196.

    Article  CAS  Google Scholar 

  62. Neu, R.W., A mechanistic-based thermomechanical fatigue life prediction model for metal matrix composite. Fatigue Fract. Engng Mater. Struct., 16(8) (1993) 811–828.

    Article  CAS  Google Scholar 

  63. Russ, S.M. and Hanson, D.G., Fatigue and thermomechanical fatigue of a SiC/Titanium [0/90] 2s composite. In Fatigue ′93 (eds Bailon, J.-P. and Dickson, J.I.). Montreal, Quebec, Canada, 1993, pp. 969–974.

    Google Scholar 

  64. Nicholas, T. and Updegraff, J.J., Modeling thermal fatigue damage in metal matrix composites. Comp. Engng, 4(7) (1994) 775–785.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gao, Z. (1996). Numerical modeling of damage, property degradation and life prediction in fatigue of composite laminates. In: Bull, J.W. (eds) Numerical Analysis and Modelling of Composite Materials. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0603-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0603-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4266-6

  • Online ISBN: 978-94-011-0603-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics