Skip to main content

Effects of landscape pattern on competitive interactions

  • Chapter
Mosaic Landscapes and Ecological Processes

Abstract

Interspecific competition for shared and limiting resources is widely thought to be one of the forces, perhaps even the main force, that has shaped biodiversity in the past and continues to shape it in the present. In the course of evolution, new taxa have replaced old ones (Simpson, 1949; Stanley, 1979; for a particular taxon, see e.g. Cambefort, 1991a), and although we remain largely ignorant about the actual mechanisms, competition is most likely involved. Natural invasions and human introductions of alien species have often led to a significant reduction in abundances (Elton, 1958) or complete elimination of native species (Greenway, 1967; Ebenhard, 1988), although how frequently aliens have competitively eliminated natives remains a matter of debate (e.g. Simber-loff, 1981, versus Herbold and Moyle, 1986). One likely reason why aliens do not routinely cause a rapid extinction of native species is the arena of their competition, a diverse landscape mosaic, which in various ways helps species to coexist — the subject matter of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramsky, Z. and Rosenzweig, M. L. (1984) Tilman’s predicted productivity-diversity relationship shown by desert rodents. Nature, 309, 150–1.

    Article  PubMed  CAS  Google Scholar 

  • Abramsky, Z., Rosenzweig, M. L. and Brand, S. (1985) Habitat selection in Israeli desert rodents: comparison of a traditional and a new method of analysis. Oikos, 45, 79–88.

    Article  Google Scholar 

  • Abramsky, Z., Rosenzweig, M. L. and Pinshow, B. (1991) The shape of a gerbil isocline measured using principles of optimal habitat selection, Ecology, 72, 329–40.

    Article  Google Scholar 

  • Abramsky, Z., Rosenzweig, M. L., Pinshow, B. et al. (1990) Habitat selection: an experimental field test with two gerbil species. Ecology, 71, 2358–69.

    Article  Google Scholar 

  • Abramsky, Z., Rosenzweig, M. L. and Zubach, A. (1992) The shape of a gerbil isocline: an experimental field study. Oikos, 63, 193–9.

    Article  Google Scholar 

  • Armstrong, R. A. (1976) Fugitive species: experiments with fungi and some theoretical considerations. Ecology, 57, 953–63.

    Article  Google Scholar 

  • Atkinson, W. D. and Shorrocks, B. (1981) Competition on a divided and ephemeral resource: a simulation model. J. Anim. Ecol., 54, 507–18.

    Article  Google Scholar 

  • Barkai, A. and McQuaid, C. (1988) Predator-prey role reversal in a marine benthic ecosystem. Science, 242, 62–4.

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson, J. (1986) Life histories and interspecific competition between three Daphnia species in rockpools. J. Anim. Ecol., 55, 641–55.

    Article  Google Scholar 

  • Bengtsson, J. (1988) Life Histories, Interspecific Competition and Regional Distribution of three Rockpool Daphnia Species. PhD thesis, Uppsala Univ., Sweden.

    Google Scholar 

  • Bengtsson, J. (1989) Interspecific competition increases local extinction rate in a metapopulation system. Nature, 340, 713–15.

    Article  Google Scholar 

  • Bengtsson, J. (1991) Interspecific competition in metapopulations, in Metapopulation Dynamics (eds M. Gilpin and I. Hanski), Academic Press, London, pp. 219–37.

    Google Scholar 

  • Bowers, M. A., Thompson, D. B. and Brown, J. H. (1987) Foraging and microhabitat use in desert rodents: the role of a dominant competitor. Oecologia, 7, 77–82.

    Article  Google Scholar 

  • Cambefort, Y. (1991a) Biogeography and evolution, in Dung Beetle Ecology (eds I. Hanski and Y. Cambefort), Princeton University Press, Princeton, NJ, pp. 51–68.

    Google Scholar 

  • Cambefort, Y. (1991b) Dung beetles in tropical savannas, Dung Beetle Ecology (eds I. Hanski and Y. Cambefort), Princeton University Press, Princeton, NJ, pp. 156–78.

    Google Scholar 

  • Chesson, P. (1991) A need for niches? Trends Ecol Evol., 6, 26–8.

    Article  PubMed  CAS  Google Scholar 

  • Chesson, P. L. and Warren, R. R. (1981) Environmental variability promotes coexistence in lottery competitive systems. Am. Nat., 117, 923–43.

    Article  Google Scholar 

  • Christiansen, F. B. and Fenchel, T. M. (1977) Theories of Populations and Biological Communities, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Colwell, R. K. and Fuentes, E. R. (1975) Experimental studies of the niche. Ann. Rev. Ecol. Syst., 6, 281–310.

    Article  Google Scholar 

  • Connell, J. H. (1978) Diversity in tropical forests and coral reefs. Science, 199, 1302–10.

    Article  PubMed  CAS  Google Scholar 

  • Connell, J. H. (1983) On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat., 122, 661–96.

    Article  Google Scholar 

  • Connor, E. F. and Bowers, M. A. (1987) The spatial consequences of interspecific competition. Ann. Zool. Fennici, 24, 213–26.

    Google Scholar 

  • Danielson, B. J. (1991) Communities in a landscape: the influence of habitat heterogeneity on the interactions between species. Am. Nat., 138, 1105–20.

    Article  Google Scholar 

  • Ebenhard, T (1988) Introduced birds and mammals and their ecological effects. Swed. Wildl. Res., 13, 1–107.

    Google Scholar 

  • Elton, C. S. (1958) The Ecology of Invasions by Animals and Plants, Chapman and Hall, London.

    Google Scholar 

  • Erlinge, S. and Sandell, M. (1988) Co-existence of stoat (Mustela erminea) and weasel (Mustela nivalis): social dominance, scent communication and reciprocal distribution. Oikos, 53, 242–6.

    Article  Google Scholar 

  • Frye, R. J. (1983) Experimental field evidence of interspecific aggression between two species of kangaroo rat (Dipodomys). Oecologia, 59, 74–8.

    Article  Google Scholar 

  • Gause, G. F. (1934) The Struggle for Existence, Hafner, New York.

    Book  Google Scholar 

  • Gilpin, M. and Hanski, I. (eds) (1991) Metapopulation Dynamics, Academic Press, London.

    Google Scholar 

  • Greenway, J. C., Jr (1967) Extinct and Vanishing Birds of the World, Dover Books, New York.

    Google Scholar 

  • Grubb, P. (1977) The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol. Rev., 52, 107–45.

    Article  Google Scholar 

  • Hanski, I. (1981) Coexistence of competitors in patchy environments with and without predation. Oikos, 37, 306–12.

    Article  Google Scholar 

  • Hanski, I. (1983) Coexistence of competitors in patchy environments. Ecology, 64, 493–500.

    Article  Google Scholar 

  • Hanski, I. (1987a) Colonization of ephemeral habitats, in Colonization, Succession and Stability (eds A. J. Gray, M. J. Crawley and P. J. Edwards), Blackwell, Oxford, pp. 155–86.

    Google Scholar 

  • Hanski, I. (1987b) Carrion fly community dynamics: patchiness, seasonality and coexistence. Ecol. Ent., 12, 257–66.

    Article  Google Scholar 

  • Hanski, I. (1989) Population biology of Eurasian shrews: Towards a synthesis. Ann. Zool. Fennici, 26, 469–79.

    Google Scholar 

  • Hanski, I., (1992) Insectivorous mammals, in Natural Enemies (ed. M. J. Crawley), Blackwell, Oxford, pp. 163–87.

    Chapter  Google Scholar 

  • Hanski, I. and Kaikusalo, A. (1989) Distribution and habitat selection of shrews in Finland. Ann. Zool. Fennici, 26, 339–48.

    Google Scholar 

  • Hanski, I. and Ranta, E. (1983) Coexistence in a patchy environment: three species of Daphnia in rock pools. J. Anim. Ecol., 52, 263–79.

    Article  Google Scholar 

  • Hanski, I. and Zhang, D.-Y. (1993) Migration, metapopulation dynamics and fugitive coexistence. J. Theor. Biol., 163, 491–504.

    Article  Google Scholar 

  • Hardin, G. (1960) The competitive exclusion principle. Science, 131, 1292–7.

    Article  PubMed  CAS  Google Scholar 

  • Herbold, B. and Moyle, P. B. (1986) Introduced species and vacant niches. Am. Nat., 128, 751–60.

    Article  Google Scholar 

  • Holt, R. D. (1985) Density-independent mortality, non-linear competitive interactions, and species coexistence. J. Theor. Biol., 116, 479–93.

    Article  Google Scholar 

  • Horn, H. S. and MacArthur, R. H. (1972) Competition among fugitive species in a harlequin environment. Ecology, 53, 749–52.

    Article  Google Scholar 

  • Hubbell, S. P. (1979) Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 203, 1299–309.

    Article  PubMed  CAS  Google Scholar 

  • Hubbell, S. P. and Foster, R. B. (1986) Biology, chance, and history and the structure of tropical rain forest tree communities, in Community Ecology (eds T. J. Case and J. Diamond), Harper & Row, New York, pp. 314–29.

    Google Scholar 

  • Hutchinson, G. E. (1951) Copepodology for the ornithologist. Ecology, 32, 571–7.

    Article  Google Scholar 

  • Hutchinson, G. E. (1978) An Introduction to Population Ecology, Yale University Press, New Haven.

    Google Scholar 

  • Ives, A. R. (1988) Aggregation and the coexistence of competitors. Ann. Zool. Fennici, 25, 75–88.

    Google Scholar 

  • Ives, A. R. (1991) Aggregation and coexistence in a carrion fly community. Ecol. Monogr., 61, 75–94.

    Article  Google Scholar 

  • Ives, A. R. and May, R. M. (1985) Competition within and between species in a patchy environment: relations between microscopic and macroscopic models. J. Theor. Biol., 115, 65–92.

    Article  Google Scholar 

  • Kotler, B. J. and Brown, J. S. (1988) Environmental heterogeneity and the coexistence of desert rodents. Ann. Rev. Ecol. Syst., 19, 281–308.

    Article  Google Scholar 

  • Levin, S. A. (1974) Dispersion and population interactions. Am. Nat., 108, 207–28.

    Article  Google Scholar 

  • Levins, R. (1968) Evolution in Changing Environments, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Levins, R. (1969) Some demographic consequences of environmental heterogeneity for biological control. Bull. Ent. Soc. Am., 15, 237–40.

    Google Scholar 

  • Levins, R. and Culver, D. (1971) Regional coexistence of species and competition between rare species. Proc. Nat. Acad. Sci. USA, 68,1246–8.

    Article  PubMed  CAS  Google Scholar 

  • Lubchenko, J. (1978) Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am. Nat., 112, 23–39.

    Article  Google Scholar 

  • MacArthur, R. H. and Pianka, E. (1966) On the optimal use of a patchy environment. Am. Nat., 100, 603–9.

    Article  Google Scholar 

  • Marino, P. C. (1988) Coexistence on divided habitats: mosses in the family Splachnaceae. Ann. Zool. Fennici, 25, 89–98.

    Google Scholar 

  • McPeek, M. A. and Holt, R. D. (1992) The evolution of dispersal in spatially and temporally varying environments. Am. Nat., 140,1010–27.

    Article  Google Scholar 

  • Nee, S. and May, R. M. (1992) Dynamics of metapopulations: habitat destruction and competitive coexistence. J. Anim. Ecol., 61, 37–40.

    Article  Google Scholar 

  • Pajunen, V. I. (1979) Competition between rock pool corixids. Ann. Zool. Fennici, 16, 138–43.

    Google Scholar 

  • Pajunen, V. I. (1982) Replacement analysis of non-equilibrium competition between rock pool corixids (Hemiptera, Corixidae). Oecologia, 52, 153–5.

    Article  Google Scholar 

  • Pajunen, V. I. (1986) Distributional dynamics of Daphnia species in a rockpool environment. Ann. Zool. Fennici, 23, 131–40.

    Google Scholar 

  • Ranta, E. (1979) Niche of Daphnia species in rockpools. Ann. Zool. Fennici, 19, 337–47.

    Google Scholar 

  • Rosenzweig, M. L. (1981) A theory of habitat selection. Ecology, 62,327–35.

    Article  Google Scholar 

  • Rosenzweig, M. L. (1992) Species diversity gradients: we know more and less than we thought. J. Mamm., 73, 715–30.

    Article  Google Scholar 

  • Rosenzweig, M. L. and Abramsky, Z. (1985) Detecting density-dependent habitat selection. Am. Nat., 126, 400–17.

    Article  Google Scholar 

  • Rosenzweig, M. L. and Abramsky, Z. (1986) Centrifugal community organization. Oikos, 45, 79–88.

    Google Scholar 

  • Sale, R E (1977) Maintenance of high diversity in coral reef fish communities. Am. Nat., 111, 337–59.

    Article  Google Scholar 

  • Sale, R F. (1979) Recruitment, loss, and coexistence in a guild of territorial coral reef fishes. Oecologia, 42, 159–77.

    Article  Google Scholar 

  • Sale, P. F. (1982) Stock-recruitment relationships and regional coexistence in a lottery competitive system: a simulation study. Am. Nat., 120, 139–59.

    Article  Google Scholar 

  • Schoener, T. W. (1974) Resource partitioning in ecological communities. Science, 185, 27–39.

    Article  PubMed  CAS  Google Scholar 

  • Schoener, T. W. (1983) Field experiments on interspecific competition. Am. Nat., 12, 240–85.

    Article  Google Scholar 

  • Shorrocks, B. (1990) Coexistence in a patchy environment, in Living in a Patchy Environment (eds B. Shorrocks and I. R. Swingland), Oxford University Press, Oxford, pp. 91–106.

    Google Scholar 

  • Simberloff, D. (1981) Community effects of introduced species, in Biotic Crises in Ecological and Evolutionary Time (ed. H. Nitecki), Academic Press, New York, pp. 53–81.

    Google Scholar 

  • Simpson, G. G. (1949) The Meaning of Evolution, Yale University Press, New Haven.

    Google Scholar 

  • Skellam, J. G. (1951) Random dispersal in theoretical populations. Biometrika, 38, 196–218.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. (1974) Competition and regional coexistence. Ecology, 55, 126–34.

    Article  Google Scholar 

  • Stanley, S. M. (1979) Macroevolution, Freeman, San Francisco.

    Google Scholar 

  • Ståhls, G., Ribeiro, E. and Hanski, I. (1989) Fungivorous Pegomya: spatial and temporal variation in a guild of competitors. Ann. Zool. Fennici, 26, 103–12.

    Google Scholar 

  • Tilman, D. (1982) Resource Competition and Community Structure, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Underwood, T. (1986) The analysis of competition by field experiments, in Community Ecology (eds J. Kikkawa and D. J. Anderson), Blackwell, Oxford.

    Google Scholar 

  • Volterra, V. (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Acad. Naz. dei Lincei, 2, 31–113.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hanski, I. (1995). Effects of landscape pattern on competitive interactions. In: Hansson, L., Fahrig, L., Merriam, G. (eds) Mosaic Landscapes and Ecological Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0717-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0717-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4309-0

  • Online ISBN: 978-94-011-0717-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics