Skip to main content

Regularity analysis of functions and random processes using wavelets

  • Chapter
Wavelets and Their Applications

Part of the book series: NATO ASI Series ((ASIC,volume 442))

Abstract

In the first part of the paper, we recall how the pointwise smoothness of functions can be studied using orthonormal bases of wavelets, and we give three applications: pointwise regularity of elliptic operators, refined Sobolev imbeddings, and the construction of multifractal functions having a prescribed spectrum of singularities.

In the second part of the paper, we show how to construct wavelets that are orthonormal for the scalar product 〈Af, g〉 where A is a positive differential or pseudodifferential operator. We use these wavelets to decompose a large class of multidimensional Gaussian processes, including fractional Brownian motion, but also processes with nonstationary increments. This decomposition simplifies the simulation of the process (its wavelet coefficients are independent, identically distributed Gaussiane), and it allows us to calculate its exact local and global modulus of continuity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. Arnéodo, E. Bacry, and J.F. Muzy. Direct determination of the singularity spectrum of fully developed turbulence data. Preprint, 1991.

    Google Scholar 

  2. A. Arnéodo, E. Bacry, and J.F. Muzy. Singularity spectrum of fractal signals from wavelet analysis: exact results. Preprint, 1991.

    Google Scholar 

  3. A. Benassi. Théorème de traces stochastiques et fonctionnelles multiplicatives pour des champs gaussiens markoviens d’ordre p. Z. für Wahrscheinlichkeitstheorie, 59:333–354, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Benassi, S. Jaffard, and D. Roux. Analyse multiéchelle des champs gaussiens markoviens d’ordre p indexés par [0,1]. C.R.A.S., 313:403–406, 1991.

    MathSciNet  MATH  Google Scholar 

  5. A. Benassi, S. Jaffard, and D. Roux. Analyse multiéchelle des champs gaussiens markoviens d’ordre p indexés par [0,1]. Preprint, 1991.

    Google Scholar 

  6. A. Benassi, S. Jaffard, and D. Roux. Module de continiuté des champs aléatoires gaussiens étudiés au moyen d’ondelettes appropriées. C.R.A.S., 315:441–446, 1992.

    MathSciNet  MATH  Google Scholar 

  7. G. Benfatto, G. Gallavotti, and F. Nicolô. Elliptic equations and gaussian processes. J. Functional Analysis, 36(3):343–400, 1980.

    Article  MATH  Google Scholar 

  8. J.M. Bony. Second microlocalization and propagation of singularities for semilinear hyperbolic equations. In Tanaguchi Symp. HERT. Katata, pages 11–49, 1984.

    Google Scholar 

  9. G. Brown, G. Michon, and J. Peyrière. On the multifractal analysis of measures. Preprint, 1991.

    Google Scholar 

  10. A.P. Calderón and A. Zygmund. Singular integral operators and differential equations. J. Amer. Math Soc., 79:901–921, 1957.

    MATH  Google Scholar 

  11. I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math, 41, 1988.

    Google Scholar 

  12. I. Daubechies. Ten lectures on wavelets. In CBMS-NSF Conf. SIAM, volume 61, 1992.

    Google Scholar 

  13. R.J. di Perna and P.L. Lions. On the Cauchy problem for Boltzmann equation. Global existence and weak stability. Annals of Mathematics, 130:321–366, 1989.

    Article  MathSciNet  Google Scholar 

  14. R.J. di Perna and A. Majda. Reduced Hausdorff dimension and concentration-cancelleation for two-dimensional incompressible flows. J. Amer. Math. Soc., 1:59–95, 1988.

    Article  MathSciNet  Google Scholar 

  15. M. Farge and D. Rabreau. Transformée en ondelettes pour détecter et analyser les structures cohérentes dans les écoulements turbulents bidimensionnels. C.R.A.S., 307(Série 2):1479–1486, 1988.

    Google Scholar 

  16. P. Federbush. Quantum field theory in ninety minutes. Bull. AMS, 1987.

    Google Scholar 

  17. S. Jaffard. Exposants de holder en des points donnés et coefficients d’ondelettes. C.R.A.S., 308:79–81, 1989.

    MathSciNet  MATH  Google Scholar 

  18. S. Jaffard. Pointwise smoothness, two-microlocalization and wavelet coefficients. Publicacions Matematiques, 35:155–168, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Jaffard. Sur la dimension de Hausdorff des points singuliers d’une fonction. CR.A.S., 314(Série 1):31–36, 1991.

    MathSciNet  Google Scholar 

  20. S. Jaffard. Construction de fonctions multifractales ayant un spectre de singularités prescrit. C.R. A.S., 315(Série 1):19–24, 1992.

    MathSciNet  MATH  Google Scholar 

  21. S. Jaffard and Ph. Laurençot. Orthonormal wavelets, analysis of operators, and applications to numerical analysis. In CK. Chui, editor, Wavelets: A Tutorial in Theory and Applications, pages 543–601. Academic Press, New York, 1992.

    Google Scholar 

  22. J.-P. Kahane. Some random series of functions. Cambridge University Press, 2, 1985.

    Google Scholar 

  23. A.M. Kolmogorov. A refinement of previous hypotheses concerning the local structure of turbulence in viscous incompressible fluid at high Reynolds numbers. Journal of Fluid Mech., 177:133–166, 1961.

    Google Scholar 

  24. N. Kono. On the modulus of continuity of sample functions of Gaussian processes. Jour. Math. Kyoto Univ., 10:493–539, 1970.

    MathSciNet  MATH  Google Scholar 

  25. P.G. Lemarié. Ondelettes à localisation exponentielle. Journal de Mathématiques Pures et Appliquées, 67:227–236, 1988.

    MATH  Google Scholar 

  26. P.G. Lemarié and Y. Meyer. Ondelettes et bases hilbertiennes. Revista Math. Iberoamericana, 1, 1986.

    Google Scholar 

  27. T. Lundahl, W. Ohley, S. Kay, and R. Siffert. Fractional Brownian motion: A maximum likelihood estimator and its applications to image texture. IEEE Medical Imaging, MI5(3):152–161, 1986.

    Article  Google Scholar 

  28. MacKean. Brownian motion with a several dimensional time. Theor. Probability Appl., 8(4):335–354, 1963.

    Article  Google Scholar 

  29. Y. Maday, V. Perrier, and J.C. Ravel. Adaptativité dynamique sur bases d’ondelettes pour l’approximation d’équations aux dérivées partielles. C.R.A.S., 1991.

    Google Scholar 

  30. S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L2 (ℝ). Trans. Amer. Math. Soc., 315:69–88, 1989.

    MathSciNet  MATH  Google Scholar 

  31. S. Mallat and W.L. Hwang. Singularity detection and processing with wavelets. Preprint, 1991.

    Google Scholar 

  32. B. Mandelbrot and J. Van Ness. Fractional Brownian motion, fractional noises and applications. SIAM Review, 10:422–437, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Meyer. Remarques sur un théorème de J.M. Bony. Rend. Circ. Mat. Palermo, 1:1–20, 1981.

    MATH  Google Scholar 

  34. Y. Meyer. Ondelettes et Opérateurs. Hermann, Paris, 1990.

    Google Scholar 

  35. Y. Meyer. Wavelets and applications. In Proceedings of the International Congress of Mathematics Kyoto, 1990.

    Google Scholar 

  36. L.D. Pitt. A Markov property for Gaussian processes with a multidimensional parameter. Arch. Rat. Mech. and Analysis, 43:367–391, 1971.

    MathSciNet  MATH  Google Scholar 

  37. E. Stein. Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, 1970.

    MATH  Google Scholar 

  38. F. Trèves. Introduction to pseudodifferential and Fourier integral operators. The University Series in Mathematics. 1980.

    Google Scholar 

  39. Y. Zheng. Concentration in sequences of solutions to the nonlinear Klein-Gordon equation. Indiana Univ. Math. J., 40(1), 1991.

    Google Scholar 

  40. W.P. Ziemer. Weakly differentiable functions. Springer-Verlag, Berlin, 1989.

    Book  MATH  Google Scholar 

  41. A. Zygmund. Trigonometric series. Cambridge Math Lib., 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jaffard, S. (1994). Regularity analysis of functions and random processes using wavelets. In: Byrnes, J.S., Byrnes, J.L., Hargreaves, K.A., Berry, K. (eds) Wavelets and Their Applications. NATO ASI Series, vol 442. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1028-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1028-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4448-6

  • Online ISBN: 978-94-011-1028-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics