Skip to main content

Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes

  • Conference paper
Aquatic Birds in the Trophic Web of Lakes

Part of the book series: Developments in Hydrobiology ((DIHY,volume 96))

Abstract

In Lake Krankesjön, southern Sweden, sago pondweed (Potamogeton pectinatus L.) and a stonewort (Chara tomentosa L.) expanded spatially during the second half of the 1980’s after more than a decade of phytoplankton blooms and sparse submerged vegetation. During the expansion of submerged plants the number of resting and breeding waterfowl increased. The increase was significant for herbivorous birds such as coot (Fulica atra L.) and mute swan (Cygnus olor (Gmelin)), but also for omnivorous dabbling ducks. The shift from phytoplankton to submerged macrophytes caused structural changes on higher trophic levels, and an altered trophic web developed. The density of planktonic Cladocera decreased,which is suggested to be a result of decreased phytoplankton productivity and biomass as nutrient levels dropped. The benthic macroinvertebrate assemblage changed from low diversity and biomass dominated by Chironomidae and Oligochaeta on bare sediment, to high diversity and biomass characterized by plant-associated forms like snails and isopods in areas covered by macrovegetation. The mean size of perch (Perca fluviatilis L.) increased, probably as a result of higher availability of macroinvertebrates in the vegetation. The perch reached a mean size where the species is known to shift to a fish diet, permitting an increased top down effect on the ecosystem. The results support the idea that shallow eutrophic lakes can shift between two states, each one stabilized by feed-back mechanisms including both biotic and abiotic factors. Shifts between these states are suggested to be a possible explanation for observed drastic changes in abundance of waterfowl in shallow eutrophic lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, G., 1981. The influence of fish on waterfowl and waterfowl habitats. Anser 20: 21–34. (In Swedish with English summary and figure legends.)

    Google Scholar 

  • Andersson, G., W. Granéli & J. Stenson, 1988. The influence of animals on phosphorus cycling in lake ecosystems. Hydrobiologia 170: 267–284.

    Article  CAS  Google Scholar 

  • Andersson, G., I. Blindow, A. Hargeby & S.Johansson, 1990. The recovery of Lake Krankesjön. Anser 29: 53–62. (In Swedish with English summary and figure legends.)

    Google Scholar 

  • Blindow, I., 1992. Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwat.Biol. 28: 15–77.

    Article  Google Scholar 

  • Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term studies of alternative stable states in two shallow eutrophic Freshwat. Biol. 30 in print.

    Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1979. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Article  Google Scholar 

  • Diehl, S., 1988. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214.

    Article  Google Scholar 

  • Dvorak, J. & E. P. H. Best, 1982. Macroinvertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships. Hydrobiologia 95 (Dev. Hydrobiol. 11): 115–126.

    Article  Google Scholar 

  • Gaevskaya, N. S., 1969. The role of higher aquatic plants in the nutrition of the animals of fresh-water basins. (Rol’ vysshikh vodnykh rastenii v pitanii zhivotnykh presnykh vodoemov, Academy of sciences of the USSR, Moscow 1966). National Lending Library for Science and Technology,Boston Spa, Yorkshire, England.

    Google Scholar 

  • Glutz von Blotzheim, U., K. Bauer & E. Bezzel, 1973. Handbuch der Vögel Mitteleuropas. Frankfurt.

    Google Scholar 

  • Gregg, W. W & F. Rose, 1985. Influences of aquatic macrophytes on invertebrate community structure, guild structure,and microdistribution in streams. Hydrobiologia 128: 45–56.

    Article  Google Scholar 

  • Grimm, M. P. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes, and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200/201: 557–566.

    Article  Google Scholar 

  • Hanson, M. A. & M. G. Butler, 1990. Early responses of plankton and turbidity to biomanipulation in a shallow prairie lake. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 317–327.

    Article  Google Scholar 

  • Hargeby, A., 1990. Macrophyte associated invertebrates and the effect of habitat permanence. Oikos 57: 338–346.

    Article  Google Scholar 

  • Hosper, S. H., 1989. Biomanipulation, new perspectives for restoration of shallow, eutrophic lakes in the Netherlands. Hydrobiol. Bull. 23: 5–10.

    Article  Google Scholar 

  • Karlsson, J., A. Lindgren & G. Rudebeck, 1976. Drastic changes in vegetation and bird fauna in Lake Krankesjön and Lake Björkesåkrasjön, South Sweden 1973–1976. Anser 15: 165–184 (In Swedish with English summary and figure legends).

    Google Scholar 

  • Krecker, F. H., 1939. A comparative study of the animal populations of certain submerged aquatic plants. Ecology 20: 553–562.

    Article  Google Scholar 

  • Lammens, E. H. R. R., R. D. Gulati, M.-L. Meijer & E. van Donk, 1990. The first biomanipulation conference: a synthesis.Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 619–627.

    Article  Google Scholar 

  • Meijer, M.-L., M. W. de Haan, A. W. Breukelaar & H. Buiteveld, 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 303–315.

    Article  Google Scholar 

  • Mitchell, S. F., 1989. Primary production in a shallow eutrophic lake dominated alternately by phytoplankton and by submerged macrophytes. Aquat. Bot. 33: 101–110.

    Article  Google Scholar 

  • Moss, B., 1989. Water pollution and the management of ecosystems:A case study of science and scientist. In Grubb, P. J. & Whittaker, J. B. (eds) Toward a more exact ecology, Blackwell, Oxford: 401–422.

    Google Scholar 

  • Olney, P. J. S., 1968. The food and feeding-habits of the Pochard,Aythya ferina. Biol. Conserv. 1: 71–76.

    Article  Google Scholar 

  • Pehrsson, O., 1984. Relationships of food to spatial and temporal breeding strategies of mallards in Sweden. J. Wildl. Mgmt. 48: 322–339.

    Article  Google Scholar 

  • Persson, L., 1986. Effects of reduced interspecific competition on resource utilization in perch (Perca fluviatilis). Ecology 67: 355–364.

    Article  Google Scholar 

  • Scheffer, M., 1989. Alternative stable states in eutrophic, shallow freshwater systems: a minimal model. Hydrobiol. Bull. 23: 73–83.

    Article  Google Scholar 

  • Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 475–486.

    Article  Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: the next phase - making it stable. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 13–27.

    Article  Google Scholar 

  • Swanberg, P.-O., 1931. Krankesjön - ett fåglarnas paradis. Natur och Kultur. Stockholm.

    Google Scholar 

  • Van Donk, E., M. P. Grimm, R. D. Gulati & J. P. G. Klein Breteler, 1990. Whole-lake food web manipulation as a means to study community interactions in a small ecosystem.Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 275–289.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joseph J. Kerekes

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hargeby, A., Andersson, G., Blindow, I., Johansson, S. (1994). Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. In: Kerekes, J.J. (eds) Aquatic Birds in the Trophic Web of Lakes. Developments in Hydrobiology, vol 96. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1128-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1128-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4493-6

  • Online ISBN: 978-94-011-1128-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics