Skip to main content

Lipids, Apolipoproteins and Lipoproteins

  • Chapter
Genetic factors in coronary heart disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 156))

Abstract

Lipids are transported in the circulation by lipoproteins, macromolecular complexes that consist of lipids (unesterified and esterified cholesterol, triglycerides, and phospholipids) and proteins, termed apolipoproteins. Apolipoproteins serve a variety of physiological functions in lipoprotein metabolism, including cofactors for enzymes, ligands for cell-surface receptors, and structural proteins for lipoprotein biosynthesis. A summary of the major apolipoproteins and their known functions is provided in Table 6.1 (reviewed in Reference 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brewer HB Jr, Gregg RE, Hoeg JM. Apolipoproteins, lipoproteins and atherosclerosis. In: Braunwald E, ed. Heart disease: A textbook of cardiovascular medicine. New York: W.B. Saunders, 1989:121.

    Google Scholar 

  2. Santamarina-Fojo S. Genetic dyslipoproteinemias: role of lipoprotein lipase and apolipo-protein C-II. Curr Opin Lipidol. 1992;3:186.

    Article  CAS  Google Scholar 

  3. Kern PA. Lipoprotein lipase and hepatic lipase. Curr Opin Lipidol. 1991;2:62.

    Article  Google Scholar 

  4. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34.

    Article  PubMed  CAS  Google Scholar 

  5. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol: Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989;230:915.

    Google Scholar 

  6. Alaupovic P, McConathy WJ, Fesmire J, Tavella M, Bard JM. Profiles of apolipoproteins and apolipoprotein B-containing lipoprotein particles in dyslipoproteinemias. Clin Chem. 1988;34:B13.

    PubMed  CAS  Google Scholar 

  7. Brewer HB Jr, Rader DJ. HDL: Structure, function and metabolism. Prog Lipid Res. 1991;30:139.

    Article  PubMed  CAS  Google Scholar 

  8. Tall AR. Plasma high density lipoproteins. Metabolism and relationship to atherogenesis. J Clin Invest. 1990;86:379.

    Article  PubMed  CAS  Google Scholar 

  9. Jonas A. Lecithin-cholesterol acyltransferase in the metabolism of high-density lipoproteins. Biochim Biophys Acta Lipids Lipid Metab. 1991;1084:205.

    Article  CAS  Google Scholar 

  10. Swenson TL. The role of the cholesterol ester transfer protein in lipoprotein metabolism. Diabetes Metab Rev. 1991;7:139.

    Article  PubMed  CAS  Google Scholar 

  11. Menotti A, Keys A, Aravanis C, et al. Seven Countries Study. First 20-year mortality data in 12 cohorts of six countries. Ann Med. 1989;21:175.

    Article  PubMed  CAS  Google Scholar 

  12. The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. J Am Med Assoc. 1984;251:351.

    Google Scholar 

  13. The Lipid Research Clinics Coronary Primary Prevention Trial Results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. J Am Med Assoc. 1984;251:365.

    Google Scholar 

  14. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med. 1987;317:1237.

    Article  PubMed  CAS  Google Scholar 

  15. Rossouw JE, Lewis B, Rifkind BM. The value of lowering cholesterol after myocardial infarction. N Engl J Med. 1990;323:1112.

    Article  PubMed  CAS  Google Scholar 

  16. Austin MA. Plasma triglyceride and coronary heart disease. Arteriosclerosis. 1991;11:2.

    Article  CAS  Google Scholar 

  17. Gordon DJ, Rifkind BM. High-density lipoprotein — the clinical implications of recent studies. N Engl J Med. 1989;321:1311.

    Article  PubMed  CAS  Google Scholar 

  18. The National Cholesterol Education Program Expert Panel. Report of the National Cholesterol Education Program Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults. Arch Intern Med. 1988;148:36.

    Google Scholar 

  19. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 1979;76:333.

    Article  PubMed  CAS  Google Scholar 

  20. Fogelman AM, Schechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA. 1980;77:2214.

    Article  PubMed  CAS  Google Scholar 

  21. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci USA. 1981;78:6499.

    Article  PubMed  CAS  Google Scholar 

  22. Morel DW, DiCorleto PE, Chisolm GM. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis. 1984;4:357.

    Article  PubMed  CAS  Google Scholar 

  23. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA. 1984;81:3883.

    Article  PubMed  CAS  Google Scholar 

  24. Parthasarathy S, Printz DJ, Boyd D, Joy L, Steinberg D. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis. 1986;6:505.

    Article  PubMed  CAS  Google Scholar 

  25. Krieger M. Molecular flypaper and atherosclerosis: Structure of the macrophage scavenger receptor. Trends Biochem Sci. 1992;17:141.

    Article  PubMed  CAS  Google Scholar 

  26. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785.

    Article  PubMed  CAS  Google Scholar 

  27. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science. 1988;241:215.

    Article  PubMed  CAS  Google Scholar 

  28. Palinski W, Rosenfeld ME, Ylä-Herttuala S, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA. 1989;86:1372.

    Article  PubMed  CAS  Google Scholar 

  29. Ylä-Herttuala S, Palinski W, Rosenfeld ME, et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989;84:1086.

    Article  PubMed  Google Scholar 

  30. Palinski W, Ylä-Herttuala S, Rosenfeld ME, et al. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis. 1990;10:325.

    Article  PubMed  CAS  Google Scholar 

  31. Salonen JT, Ylä-Herttuala S, Yamamoto R, et al. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet. 1992;339:883.

    Article  PubMed  CAS  Google Scholar 

  32. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA. 1987;84:7725.

    Article  PubMed  CAS  Google Scholar 

  33. Kita T, Nagano Y, Yokode M, et al. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA. 1987;84:5928.

    Article  PubMed  CAS  Google Scholar 

  34. Mao SJT, Yates MT, Parker RA, Chi EM, Jackson RL. Attenuation of atherosclerosis in a modified strain of hypercholesterolemic Watanabe rabbits with use of a probucol analogue (MDL 29,311) that does not lower serum cholesterol. Arteriosclerosis Thromb. 1991;11:1266.

    Article  CAS  Google Scholar 

  35. Sparrow CP, Doebber TW, Olszewski J, et al. Low density lipoproteins protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N’-diphenyl-phenylenediamine. J Clin Invest. 1992;89:1885.

    Article  PubMed  CAS  Google Scholar 

  36. Riemersma RA, Wood DA, Macintyre CC, Elton R, Gey KF, Oliver MF. Low plasma vitamins E and C. Increased risk of angina in Scottish men. Ann NY Acad Sci. 1989;570:291.

    Article  PubMed  CAS  Google Scholar 

  37. Dieber-Rotheneder M, Puhl H, Waeg G, Striegl G, Esterbauer H. Effect of oral supplementation with D-α-tocopherol on the vitamin E content of human low density lipoproteins and resistance to oxidation. J Lipid Res. 1991;32:1325.

    PubMed  CAS  Google Scholar 

  38. Regnstrom J, Nilsson J, Tornvall P, Landou C, Hamsten A. Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man. Lancet. 1992;339:1183.

    Article  PubMed  CAS  Google Scholar 

  39. Garrison RJ, Castelli WP, Feinleib M, et al. The association of total cholesterol, triglycerides and plasma lipoprotein cholesterol levels in first degree relatives and spouse pairs. Am J Epidemiol. 1979;110:313.

    PubMed  CAS  Google Scholar 

  40. Morrison JA, Namboordiri K, Green P, Martin J, Glueck CJ. Familial aggregation of lipids and lipoproteins and early identification of dyslipoproteinemia. The Collaborative Lipid Research Clinics Family Study. J Am Med Assoc. 1983;250:1860.

    Article  CAS  Google Scholar 

  41. Namboordiri KK, Kaplan EB, Heuch I, et al. The Collaborative Lipid Research Clinics Family Study: biological and cultural determinants of familial resemblance for plasma lipids and lipoproteins. Genet Epidemiol. 1985;2:227.

    Article  Google Scholar 

  42. Bucher KD, Friedlander Y, Kaplan EB, et al. Biological and cultural sources of familial resemblance in plasma lipids: a comparison between North America and Israel — the Lipid Research Clinics Program. Genet Epidemiol. 1988;5:17.

    Article  PubMed  CAS  Google Scholar 

  43. Segal P, Rifkind BM, Schull WJ. Genetic factors in lipoprotein variation. Epidemiol Rev. 1982;4:137.

    PubMed  CAS  Google Scholar 

  44. Innerarity TL, Mahley RW, Weisgraber KH, et al. Familial defective apolipoprotein B-100: A mutation of apolipoprotein B that causes hypercholesterolemia. J Lipid Res. 1990;31:1337.

    PubMed  CAS  Google Scholar 

  45. Salen G, Shefer S, Berginer V. Biochemical abnormalities in cerebrotendinous xanthomatosis. Devel Neurosci. 1991;13:363.

    Article  CAS  Google Scholar 

  46. Salen G, Shefer S, Nguyen L, Ness GC, Tint GS, Shore V. Sitosterolemia. J Lipid Res. 1992;33:945.

    PubMed  CAS  Google Scholar 

  47. Kelly DR, Hoeg JM, Demosky SJ Jr, Brewer HB Jr. Characterization of plasma lipids and lipoproteins in cholesteryl ester storage disease. Biochem Med. 1985;33:29.

    Article  PubMed  CAS  Google Scholar 

  48. Filling-Katz M, Fink JK, Oliver KL, et al. Hyperlipidemia as a complication of Niemann-Pick type B disease. Clin Pediatr. 1990;29:670.

    Article  CAS  Google Scholar 

  49. Fink JK, Filling-Katz MR, Sokol J, et al. Clinical spectrum of Niemann-Pick disease type C. Neurology. 1989;39:1040.

    Article  PubMed  CAS  Google Scholar 

  50. Grundy SM, Chait A, Brunzell JD. Familial combined hyperlipidemia workshop. Arteriosclerosis. 1987;7:203.

    Google Scholar 

  51. Hazzard WR, Goldstein JL, Schrott MG, Motulsky AG, Bierman EL. Hyperlipidemia in coronary heart disease. 3. Evaluation of lipoprotein phenotypes of 156 genetically defined survivors of myocardial infarction. J Clin Invest. 1973;52:1569.

    Article  PubMed  CAS  Google Scholar 

  52. Sniderman A, Shapiro S, Marpole D, Skinner B, Teng B, Kwiterovich PJ Jr. Association of coronary atherosclerosis with hyperapobetalipoproteinemia (increased protein but normal cholesterol levels in human plasma low density (beta) lipoproteins). Proc Natl Acad Sci USA. 1980;77:604.

    Article  PubMed  CAS  Google Scholar 

  53. Brunzell JD, Albers JJ, Chait A, Grundy SM, Groszek E, McDonald GB. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res. 1983;24:147.

    PubMed  CAS  Google Scholar 

  54. Chait A, Albers JJ, Brunzell JD. Very low density lipoprotein overproduction in genetic forms of hypertriglyceridaemia. Eur J Clin Invest. 1980;10:17.

    PubMed  CAS  Google Scholar 

  55. Teng B, Sniderman AD, Soutar AK, Thompson GR. Metabolic basis of hyperapobetalipoproteinemia. Turnover of apolipoprotein B in low density lipoprotein and its precursors and subfractions compared with normal and familial hypercholesterolemia. J Clin Invest. 1986;77:663.

    Article  PubMed  CAS  Google Scholar 

  56. Wojciechowski AP, Farrall M, Cullen P, et al. Familial combined hyperlipidemia linked to the apolipoprotein AI-CHI-AIV gene cluster on chromosome 11q23-q24. Nature. 1991;349:161.

    Article  PubMed  CAS  Google Scholar 

  57. Babirak SP, Brown BG, Brunzell JD. Familial combined hyperlipidemia and abnormal lipoprotein lipase. Arteriosclerosis Thromb. 1992;12:1176.

    Article  CAS  Google Scholar 

  58. Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988;8:1.

    Article  PubMed  CAS  Google Scholar 

  59. Lohse P, Brewer HB Jr. Genetic polymorphism of apolipoprotein A-IV. Curr Opin Lipidol. 1991;2:90.

    Article  CAS  Google Scholar 

  60. von Eckardstein A, Funke H, Schulte M, Erren M, Schulte H, Assmann G. Nonsynonymous polymorphic sites in the apolipoprotein (apo) A-IV gene are associated with changes in the concentration of apo B-and A-I-containing lipoproteins in a normal population. Am J Hum Genet. 1992;50:1115.

    Google Scholar 

  61. de Graaf J, Hak-Lemmers HL, Hectors MPC, Demacker PNM, Hendriks JCM, Stalenhoef AFH. Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arteriosclerosis Thromb. 1991;11:298.

    Article  Google Scholar 

  62. Dejager S, Bruckert E, Chapman MJ. Dense low density lipoprotein subspecies with diminished oxidative resistance predominant in combined hyperlipidemia. J Lipid Res. 1993;34:295.

    PubMed  CAS  Google Scholar 

  63. Austin MA, King MC, Vranizan KM, Newman B, Krauss RM. Inheritance of low-density lipoprotein subclass patterns: results of complex segregation analysis. Am J Hum Genet. 1988;43:838.

    PubMed  CAS  Google Scholar 

  64. Sparrow CP, Parthasarathy S, Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res. 1988;29:745.

    PubMed  CAS  Google Scholar 

  65. Parthasarathy S, Wieland E, Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA. 1989;86:1046.

    Article  PubMed  CAS  Google Scholar 

  66. Parthasarathy S, Barnett J, Fong LG. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta. 1990;1044:275.

    Article  PubMed  CAS  Google Scholar 

  67. Demant T, Bedford D, Packard CJ, Shepherd J. Influence of apolipoprotein E polymorphism on apolipoprotein B-100 metabolism in normolipemic subjects. J Clin Invest. 1991;88:1490.

    Article  PubMed  CAS  Google Scholar 

  68. Ishii K, Kita T, Yokoda M, et al. Characterization of very low density lipoprotein from Watanabe heritable hyperlipidemic rabbits. J Lipid Res. 1989;30:1.

    PubMed  CAS  Google Scholar 

  69. Mahley RW, Innerarity TL, Brown MS, Ho YK, Goldstein JL. Cholesteryl ester synthesis in macrophages: stimulation by beta-very low density lipoproteins from cholesterol-fed animals of several species. J Lipid Res. 1980;21:970.

    PubMed  CAS  Google Scholar 

  70. Brewer HB Jr, Zech LA, Gregg RE, Schwartz D, Schaefer EJ. Type III hyperlipoproteinemia: diagnosis, molecular defects, pathology, and treatment. Ann Intern Med. 1983;98:623.

    Article  PubMed  Google Scholar 

  71. Chait A, Brunzell JD. Acquired hyperlipidemia (secondary to dyslipoproteinemias). Endocrinol Metab Clin N Am. 1990;19:259.

    CAS  Google Scholar 

  72. Santamarina-Fojo S, Brewer HB Jr. The familial hyperchylomicronemia syndrome. New insights into underlying genetic defects. J Am Med Assoc. 1991;265:904.

    Article  CAS  Google Scholar 

  73. Nordestgaard BG, Zilversmit DB. Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits. J Lipid Res. 1988;29:1491.

    PubMed  CAS  Google Scholar 

  74. Goldstein JL, Ho YK, Brown MS, Innerarity TL, Mahley RW. Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hyper-cholesterolemic canine beta-very low density lipoproteins. J Biol Chem. 1980;255:1839.

    PubMed  CAS  Google Scholar 

  75. Bates SR, Coughlin BA, Mazzone T, Borensztajn J, Getz GS. Apoprotein E mediates the interaction of beta-VLDL with macrophages. J Lipid Res. 1987;28:787.

    PubMed  CAS  Google Scholar 

  76. Van Lenten BJ, Fogelman AM, Jackson RL, Shapiro S, Haberland ME, Edwards PA. Receptor-mediated uptake of remnant lipoproteins by cholesterol-loaded human monocyte-macrophages. J Biol Chem. 1985;260:8783.

    PubMed  Google Scholar 

  77. Kowal RC, Herz J, Goldstein JL, Esser V, Brown MS. Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc Natl Acad Sci USA. 1989;86:5810.

    Article  PubMed  CAS  Google Scholar 

  78. Bersot TP, Innerarity TL, Mahley RW, Havel RJ. Cholesteryl ester accumulation in mouse peritoneal macrophages induced by beta-migrating very low density lipoproteins from patients with atypical dysbetalipoproteinemia. J Clin Invest. 1983;72:1024.

    Article  PubMed  CAS  Google Scholar 

  79. Weisgraber KH, Mahley RW, Kowal RC, Herz J, Goldstein JL, Brown MS. Apolipoprotein C-I modulates the interaction of apolipoprotein E with β-migrating very low density lipoproteins (β-VLDL) and inhibits binding of β-VLDL to low density lipoprotein receptor-related protein. J Biol Chem. 1990;265:22453.

    PubMed  CAS  Google Scholar 

  80. Sehayek E, Eisenberg S. Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem. 1991;266:18259.

    PubMed  CAS  Google Scholar 

  81. Agnani G, Bard JM, Candelier L, Delattre S, Fruchart JC, Clavey V. Interaction of LpB, LpB:E, LpB:C-III, and LpB:C-III:E lipoproteins with the low density lipoprotein receptor of HeLa cells. Arteriosclerosis Thromb. 1991;11:1021.

    Article  CAS  Google Scholar 

  82. Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation. 1979;60:473.

    Article  PubMed  CAS  Google Scholar 

  83. Groot PHE, Van Stiphourt WAHJ, Kraus XH, et al. Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arteriosclerosis. 1991;11:653.

    Article  CAS  Google Scholar 

  84. Simpson HS, Williamson CM, Olivecrona T, et al. Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis. 1990;85:193.

    Article  PubMed  CAS  Google Scholar 

  85. Miesenbock G, Patsch JR. Postprandial hyperlipidemia: the search for the atherogenic lipoprotein. Curr Opin Lipidol. 1992;3:196.

    Article  Google Scholar 

  86. Schaefer EJ, Gregg RE, Ghiselli G, et al. Familial apolipoprotein E deficiency. J Clin Invest. 1986;78:1206.

    Article  PubMed  CAS  Google Scholar 

  87. Connelly PW, Maguire GF, Lee M, Little JA. Plasma lipoproteins in familial hepatic lipase deficiency. Arteriosclerosis. 1990;10:40.

    Article  PubMed  CAS  Google Scholar 

  88. Davignon J, Dallongeville J, Roederer G, et al. A phenocopy of type III dysbetalipoproteinemia occurring in a candidate family for a putative Apo E receptor defect. Ann Med. 1991;23:161.

    Article  PubMed  CAS  Google Scholar 

  89. Quinet E, Tall A, Ramakrishnan R, Rudel L. Plasma lipid transfer protein as a determinant of the atherogenicity of monkey plasma lipoproteins. J Clin Invest. 1991;87:1559.

    Article  PubMed  CAS  Google Scholar 

  90. Inazu A, Brown ML, Hesler CB, et al. Increased high-density lipoprotein levels caused by a common cholsteryl-ester transfer protein gene mutation. N Engl J Med. 1990;323:1234.

    Article  PubMed  CAS  Google Scholar 

  91. Wikinski RLW, Schreier LE, Rosental SB. New method for isolating and quantifying intermediate and β-very-low-density lipoprotein cholesterol. Clin Chem. 1991;37:1913.

    PubMed  CAS  Google Scholar 

  92. Blankenhorn DH, Alaupovic P, Wickham E, Chin HP, Azen SP. Prediction of angiographic change in native human coronary arteries and aortocoronary bypass grafts. Lipid and nonlipid factors. Circulation. 1990;81:470.

    Article  CAS  Google Scholar 

  93. Genest JJ Jr, Bard JM, Fruchart JC, Ordovas JM, Wilson PFW, Schaefer EJ. Plasma apolipoprotein A-I, A-II, B, E and C-III containing particles in men with premature coronary artery disease. Atherosclerosis. 1991;90:149.

    Article  PubMed  Google Scholar 

  94. Alaopovic P. Apolipoprotein composition as the basis for classifying plasma lipoproteins. Characterization of ApoA-and ApoB-containing lipoprotein families. Prog Lipid Res. 1991;30:105.

    Article  Google Scholar 

  95. Kandoussi A, Cachera C, Parsy D, Bard JM, Fruchart JC. Quantitative determination of different apolipoprotein B containing lipoproteins by an enzyme linked immunosorbent assay: Apo B with apo C-III and apo B with apo E. J Immunoassay. 1991;12:305.

    Article  PubMed  CAS  Google Scholar 

  96. Bard JM. Pharmacological modulation of ApoA-and ApoB-containing lipoproteins. Prog Lipid Res. 1991;30:267.

    Article  PubMed  CAS  Google Scholar 

  97. Utermann G. The mysteries of lipoprotein(a). Science. 1989;246:904.

    Article  PubMed  CAS  Google Scholar 

  98. Rader DJ, Brewer HB Jr. Lipoprotein(a): Clinical approach to a unique atherogenic lipoprotein. J Am Med Assoc. 1991;267:1109.

    Article  Google Scholar 

  99. Mbewu AD, Durrington PN, Lipoprotein (a): structure, properties, and possible involvement in thrombogenesis and atherogenesis. Atherosclerosis. 1990;85:1.

    Article  PubMed  CAS  Google Scholar 

  100. Rosengren A, Wilhelmsen L, Eriksson E, Risberg B, Wedel H. Lipoprotein(a) and coronary heart disease: a prospective case-control study in a general population sample of middle aged men. Br Med J. 1990;301:1248.

    Article  CAS  Google Scholar 

  101. Sigurdsson G, Baldursdottir A, Sigvaldason H, Agnarsson U, Thorgeirsson G, Sigfusson N. Predictive value of apolipoproteins in a prospective survey of coronary artery disease in men. Am J Cardiol. 1992;69:1251.

    Article  PubMed  CAS  Google Scholar 

  102. Dahlen GH, Guyton JR, Attar M, Farmer JA, Kautz JA, Gotto AM Jr. Association of levels of lipoprotein Lp(a), plasma lipids, and other lipoproteins with coronary artery disease documented by angiography. Circulation. 1986;74:758.

    Article  PubMed  CAS  Google Scholar 

  103. Armstrong VW, Cremer P, Eberle E, et al. The association between serum Lp(a) concentrations and angiographically assessed coronary atherosclerosis. Dependence on serum LDL levels. Atherosclerosis. 1986;62:249.

    Article  PubMed  CAS  Google Scholar 

  104. Genest JJ Jr, Martin-Munley SS, McNamara JR, et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation. 1992;85:2025.

    Article  PubMed  Google Scholar 

  105. Durrington PN, Ishola M, Hunt L, Arrol S, Bhatnagar D. Apolipoproteins (a), AI, and B and parental history in men with early onset ischaemic heart disease. Lancet. 1988;1:1070.

    Article  PubMed  CAS  Google Scholar 

  106. Hoff HF, Beck FJ, Skibinski CI, et al. Serum Lp(a) level as a predictor of vein graft stenosis after coronary artery bypass surgery in patients. Circulation. 1988;77:1238.

    Article  PubMed  CAS  Google Scholar 

  107. Zenker G, Koltringer P, Bone G, Niederkorn K, Pfeiffer K, Jurgens G. Lipoprotein(a) as a strong indicator for cerebrovascular disease. Stroke. 1986;17:942.

    Article  PubMed  CAS  Google Scholar 

  108. Pedro-Botet J, Senti M, Nogués X, et al. Lipoprotein and apolipoprotein profile in men with ischemic stroke: Role of lipoprotein(a), triglyceride-rich lipoproteins, and apolipoprotein E polymorphism. Stroke. 1992;23:1556.

    Article  PubMed  CAS  Google Scholar 

  109. Rath M, Niendorf A, Reblin T, Dietel M, Krebber HJ, Beisiegel U. Detection and quantification of lipoprotein(a) in the arterial wall of 107 coronary bypass patients. Arteriosclerosis. 1989;9:579.

    Article  PubMed  CAS  Google Scholar 

  110. Cushing GL, Gaubatz JW, Nava ML, et al. Quantitation and localization of apolipoproteins [a] and B in coronary artery bypass vein grafts resected at re-operation. Arteriosclerosis. 1989;9:593.

    Article  PubMed  CAS  Google Scholar 

  111. Nachman RL, Gavish D, Azrolan N, Clarkson TB. Lipoprotein (a) in diet-induced atherosclerosis in nonhuman primates. Arteriosclerosis Thromb. 1991;11:32.

    Article  CAS  Google Scholar 

  112. Loscalzo J. Lipoprotein(a). A unique risk factor for atherothrombotic disease. Arteriosclerosis. 1990;10:672.

    Article  PubMed  CAS  Google Scholar 

  113. Haberland ME, Fless GM, Scanu AM, Fogelman AM. Malondialdehyde modification of lipoprotein(a) produces avid uptake by human monocyte-macrophages. J Biol Chem. 1992;267:4143.

    PubMed  CAS  Google Scholar 

  114. McLean JW, Tomlinson JE, Kuang WJ, et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature. 1987;330:132.

    Article  PubMed  CAS  Google Scholar 

  115. Miles LA, Plow EF. Lp(a): an interloper in the fibrinolyic system. Thromb Haemost. 1990;63:331.

    PubMed  CAS  Google Scholar 

  116. Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G, Hobbs HH. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90:52.

    Article  PubMed  CAS  Google Scholar 

  117. Lackner C, Boerwinkle E, Leffert CC, Rahmig T, Hobbs HH. Molecular basis of apolipoprotein (a) isoform size heterogeneity as revealed by pulsed-field gel electrophoresis. J Clin Invest. 1991;87:2153.

    Article  PubMed  CAS  Google Scholar 

  118. Sandholzer Ch, Boerwinkle E, Saha N, Tong MC, Utermann G. Apolipoprotein(a) phenotypes, Lp(a) concentration and plasma lipid levels in relation to coronary heart disease in a Chinese population: evidence for the role of the apo(a) gene in coronary heart disease. J Clin Invest. 1992;89:1040.

    Article  PubMed  CAS  Google Scholar 

  119. Rader DJ, Cain W, Zech LA, Usher D, Brewer HB Jr. Variation in Lp(a) concentration among individuals with the same apo(a) isoform is determined by the rate of Lp(a) production. J Clin Invest. 1993;91:443.

    Article  PubMed  CAS  Google Scholar 

  120. Utermann G, Hoppichler F, Dieplinger H, Seed M, Thompson G, Boerwinkle E. Defects in the low density lipoprotein receptor gene affect lipoprotein(a) levels: multiplicative interaction of two gene loci associated with premature atherosclerosis. Proc Natl Acad Sci USA. 1989;86:4171.

    Article  PubMed  CAS  Google Scholar 

  121. Soutar AK, McCarthy SN, Seed M, Knight BL. Relationship between apolipoprotein(a) phenotype, lipoprotein(a) concentration in plasma, and low density lipoprotein receptor function in a large kindred with familial hypercholesterolemia due to the pro664-leu mutation in the LDL receptor gene. J Clin Invest. 1991;88:483.

    Article  PubMed  CAS  Google Scholar 

  122. Henriksson P, Angelin B, Berglund L. Hormonal regulation of serum Lp(a) levels. Opposite effects after estrogen treatment and orchidectomy in males with prostatic carcinoma. J Clin Invest. 1992;89:1166.

    Article  PubMed  CAS  Google Scholar 

  123. Albers JJ, Marcovina SM, Lodge MS. The unique lipoprotein(a): Properties and immunochemical measurement. Clin Chem. 1990;36:2019.

    PubMed  CAS  Google Scholar 

  124. Usher DC, Swanson C, Rader DJ, Krämer J, Brewer HB Jr. A comparison of Lp(a) levels in fresh and frozen plasma using ELISAs with either anti-apo(a) or anti-apoB reporting antibodies. Chem Phys Lipids. 1994;67/68:243.

    Article  Google Scholar 

  125. Miller NE, Associations of high-density lipoprotein subclasses and apolipoproteins with ischemic heart disease and coronary atherosclerosis. Am Heart J. 1987;113:589.

    Article  PubMed  CAS  Google Scholar 

  126. Norum RA, Lakier JB, Goldstein S, et al. Familial deficiency of apolipoproteins A-I and C-III and precocious coronary-artery disease. N Engl J Med. 1982;306:1513.

    Article  PubMed  CAS  Google Scholar 

  127. Schaefer EJ, Heaton WH, Wetzel MG, Brewer HB Jr. Plasma apolipoprotein A-l absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease. Arteriosclerosis. 1982;2:16.

    Article  PubMed  CAS  Google Scholar 

  128. Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit. J Clin Invest. 1990;85:1234.

    Article  PubMed  CAS  Google Scholar 

  129. Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature. 1991;353:265.

    Article  PubMed  CAS  Google Scholar 

  130. Reichl D, Miller NE. Pathophysiology of reverse cholesterol transport. Insights from inherited disorders of lipoprotein metabolism. Arteriosclerosis. 1989;9:785.

    Article  PubMed  CAS  Google Scholar 

  131. Henriksen T, Evensen SA, Carlander B. Injury to cultured endothelial cells induced by low density lipoproteins: protection by high density lipoproteins. Scand J Clin Lab Invest. 1979;39:369.

    Article  PubMed  CAS  Google Scholar 

  132. Fleisher LN, Tall AR, Witte LD, Miller RW, Cannon PJ. Stimulation of arterial endothelial cell prostacyclin synthesis by high density lipoproteins. J Biol Chem. 1982;257:6653.

    PubMed  CAS  Google Scholar 

  133. Yui Y, Aoyama T, Morishita H, Takahashi M, Takatsu Y, Kawai C. Serum prostacyclin stabilizing factor is identical to apolipoprotein A-I (apoA-I). A novel function of Apo AI. J Clin Invest. 1988;82:803.

    Article  PubMed  CAS  Google Scholar 

  134. Hamsten A, Iselius L, Dahlen G, de Faire U. Genetic and cultural inheritance of serum lipids, low and high density lipoprotein cholesterol and serum apolipoproteins A-I, A-II and B. Atherosclerosis. 1986;60:199.

    Article  PubMed  CAS  Google Scholar 

  135. Bucher KD, Kaplan EB, Namboodiri KK, Glueck CJ, Laskarzewski P, Rifkind BM. Segregation analysis of low levels of high-density lipoprotein cholesterol in the collaborative Lipid Research Clinics Program Family Study. Am J Hum Genet. 1987;40:489.

    PubMed  CAS  Google Scholar 

  136. Vogler GP, Wette R, Laskarzewski PM, et al. Heterogeneity in the biological and cultural determinants of high-density lipoprotein cholesterol in five North American populations: the Lipid Research Clinics Family Study. Hum Hered. 1989;39:249.

    Article  PubMed  CAS  Google Scholar 

  137. Christian J-C, Carmelli D, Castelli WP, et al. High density lipoprotein cholesterol. A 16-year longitudinal study in aging male twins. Arteriosclerosis. 1990;10:1020.

    Article  PubMed  CAS  Google Scholar 

  138. Brewer HB Jr, Santamarina-Fojo S, Hoeg JM. Genetic defects in the human plasma apolipoproteins. Atherosclerosis Rev. 1991;23:51.

    CAS  Google Scholar 

  139. Vergani C, Bettale G. Familial hypo-alpha-lipoproteinemia. Clin Chim Acta. 1981;114:45.

    Article  PubMed  CAS  Google Scholar 

  140. Third JL, Montag J, Flynn M, Freidel J, Laskarzewski P, Glueck CJ. Primary and familial hypoalphalipoproteinemia. Metabolism. 1984;33:136.

    Article  PubMed  CAS  Google Scholar 

  141. Borecki IB, Rao DC, Third JL, Laskarzewski PM, Glueck CJ. A major gene for primary hypoalphalipoproteinemia. Am J Hum Genet. 1986;38:373.

    PubMed  CAS  Google Scholar 

  142. Roma P, Gregg RE, Bishop C, et al. Apolipoprotein A-I metabolism in subjects with a Pstl restriction fragment length polymorphism of the apoA-I gene and familial hypoalphalipoproteinemia. J Lipid Res. 1990;31:1753.

    PubMed  CAS  Google Scholar 

  143. Brinton EA, Eisenberg S, Breslow JL. Increased apo A-I and apo A-II fractional catabolic rate in patients with low high-density lipoprotein-cholesterol levels with or without hypertriglyceridemia. J Clin Invest. 1991;87:536.

    Article  PubMed  CAS  Google Scholar 

  144. Glueck CJ, Fallat RW, Millett F, Gartside P, Elston RC, Go RC. Familial hyper-alpha-lipoproteinemia: studies in eighteen kindreds. Metabolism. 1975;24:1243.

    Article  PubMed  CAS  Google Scholar 

  145. Rader DJ, Schaefer JR, Lohse P, et al. Increased production of apolipoprotein A-I associated with elevated plasma levels of high density lipoproteins, apoA-I, and LpA-I in a patient with familial hyperalphalipoproteinemia. Metabolism. 1993;42:1429.

    Article  PubMed  CAS  Google Scholar 

  146. Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991;325:373.

    Article  PubMed  CAS  Google Scholar 

  147. Alaupovic P, Lee DM, McConathy WJ. Studies on the composition and structure of plasma lipoproteins. Distribution of lipoprotein families in major density classes of normal human plasma lipoproteins. Biochim Biophys Acta. 1972;260:689.

    Article  PubMed  CAS  Google Scholar 

  148. Cheung MC, Albers JJ. Characterization of lipoprotein particles isolated by immunoafiinity chromatography. Particles containing A-I and A-II and particles containing A-I but no A-II. J Biol Chem. 1984;259:12201.

    PubMed  CAS  Google Scholar 

  149. Fruchart JC, Ailhaud G. Apolipoprotein A-containing lipoprotein particles: physiological role, quantification, and clinical significance. Clin Chem. 1992;38:793.

    PubMed  CAS  Google Scholar 

  150. Eggerman TL, Hoeg JM, Meng MS, Tombragel A, Bojanovski D, Brewer HB Jr. Differential tissue-specific expression of human apoA-I and apoA-II. J Lipid Res. 1991;32:821.

    PubMed  CAS  Google Scholar 

  151. Cheung MC, Wolf AC, Lum KD, Tollefson JH, Albers JJ. Distribution and localization of lecithin: cholesterol acyltransferase and cholesteryl ester transfer activity in A-I-containing lipoproteins. J Lipid Res. 1986;27:1135.

    PubMed  CAS  Google Scholar 

  152. Mowri HO, Patsch W, Smith LC, Gotto AM Jr, Patsch JR. Different reactivities of high density lipoprotein2 subfractions with hepatic lipase. J Lipid Res. 1992;33:1269.

    PubMed  CAS  Google Scholar 

  153. Rader DJ, Castro G, Zech LA, Fruchart JC, Brewer HB Jr. In vivo metabolism of apolipoprotein A-I on high density lipoprotein particles LpA-I and LpA-I, A-II. J Lipid Res. 1991;32:1849.

    PubMed  CAS  Google Scholar 

  154. Deeb SS, Takata K, Peng RL, Kajiyama G, Albers JJ. A splice-junction mutation responsible for familial apolipoprotein A-II deficiency. Am J Hum Genet. 1990;46:822.

    PubMed  CAS  Google Scholar 

  155. Puchois P, Kandoussi A, Fievet P, Fourrier JL, Bertrand M, Koren E, Fruchart JC. Apolipoprotein A-I containing lipoproteins in coronary artery disease. Atherosclerosis. 1987;68:35.

    Article  PubMed  CAS  Google Scholar 

  156. Parra HJ, Arveiler D, Evans AE, et al. A case-control study of lipoprotein particles in two populations at contrasting risk for coronary heart disease: The ECTIM study. Arteriosclerosis Thromb. 1992;12:701.

    Article  CAS  Google Scholar 

  157. Luc G, Bard JM, Lussier-Cacan SL, et al. High-density lipoprotein particles in octogenarians. Metabolism. 1991;40:1238.

    Article  PubMed  CAS  Google Scholar 

  158. Schultz JR, Verstuyft JG, Gong EL, Nichols AV, Rubin EM. ApoAI and apoAI + apoAII transgenic mice: a comparison of atherosclerotic susceptibility. Circulation. 1992;86:1–472[Abstract].

    Article  Google Scholar 

  159. Johnson WJ, Mahlberg FH, Rothblat GH, Phillips MC. Cholesterol transport between cells and high-density lipoproteins. Biochim Biophys Acta: Lipids Lipid Metab. 1991;1085:273.

    Article  CAS  Google Scholar 

  160. Barbaras R, Puchois P, Fruchart JC, Ailhaud G. Cholesterol efflux from cultured adipose cells is mediated by LpAI particles but not by LpAI:AII particles. Biochem Biophys Res Commun. 1987;142:63.

    Article  PubMed  CAS  Google Scholar 

  161. Johnson WJ, Kilsdonk EPC, van Tol A, Phillips MC, Rothblat GH. Cholesterol efflux from cells to immunopurified subfractions of human high density lipoprotein. LP-AI and LP-AI/AII. J Lipid Res. 1991;32:1993.

    PubMed  CAS  Google Scholar 

  162. Ohta T, Takata K, Horiuchi S, Morino Y, Matsuda I. Protective effect of lipoproteins containing apoprotein A-I on Cu2 +-catalyzed oxidation of human low density lipoprotein. FEBS Lett. 1989;257:435.

    Article  PubMed  CAS  Google Scholar 

  163. Koren E, Puchois P, Alaupovic P, Fesmire J, Kandoussi A, Fruchart JC. Quantification of two different types of apolipoprotein A-I containing lipoprotein particles in plasma by enzyme-linked differential-antibody immunosorbent assay. Clin Chem. 1987;33:38.

    PubMed  CAS  Google Scholar 

  164. Parra HJ, Mezdour H, Ghalim N, Bard JM, Fruchar JC. Differential electroimmunoassay of human LpA-I lipoprotein particles on ready-to-use plates. Clin Chem. 1990;36:1431.

    PubMed  CAS  Google Scholar 

  165. Kunitake ST, La Sala KJ, Kane JP. Apolipoprotein A-I containing lipoproteins with pre-beta electrophoretic mobility. J Lipid Res. 1985;26:549.

    PubMed  CAS  Google Scholar 

  166. Castro GR, Fielding CJ. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry. 1988;27:25.

    Article  PubMed  CAS  Google Scholar 

  167. Francone OL, Gurakar A, Fielding C. Distribution and functions of lecithimcholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoproteins A-I and D that catalyzes the esterification and transfer of cell-derived cholesterol. J Biol Chem. 1989;264:7066.

    PubMed  CAS  Google Scholar 

  168. Sloop CH, Dory L, Roheim PS. Interstitial fluid lipoproteins. J Lipid Res. 1987;28:225.

    PubMed  CAS  Google Scholar 

  169. Ishida BY, Frolich J, Fielding CJ. Prebeta-migrating high density lipoprotien: quantitation in normal and hyperlipidemic plasma by solid phase radioimmunoassay following electrophoretic transfer. J Lipid Res. 1987;28:778.

    PubMed  CAS  Google Scholar 

  170. Steinmetz A, Barbaras R, Ghalim N, Clavey V, Fruchart JC, Ailhaud G. Human apolipoprotein A-IV binds to apolipoprotein A-I/A-II receptor sites and promotes cholesterol efflux from adipose cells. J Biol Chem. 1990;265:7859.

    PubMed  CAS  Google Scholar 

  171. Duverger N, Ghalim N, Ailhaud G, Steinmetz A, Fruchart JC, Castro G. Characterization of apolipoprotein A-IV-containing lipoprotein particles isolated from human plasma and interstitial fluid. Arteriosclerosis Thromb. 1993;13:126.

    Article  CAS  Google Scholar 

  172. Rader DJ, Ikewaki K, Duverger N, et al. Rapid catabolism of apolipoprotein A-II and high density lipoproteins containing apoA-II in classic LCAT deficiency and fish-eye disease. J Clin Invest. 1994;93:321.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rader, D.J., Brewer, H.B. (1994). Lipids, Apolipoproteins and Lipoproteins. In: Goldbourt, U., de Faire, U., Berg, K. (eds) Genetic factors in coronary heart disease. Developments in Cardiovascular Medicine, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1130-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1130-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4494-3

  • Online ISBN: 978-94-011-1130-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics