Skip to main content

Distributed fiber-optic sensors

  • Chapter
Optical Fiber Sensor Technology

Part of the book series: Optical and Quantum Electronics Series ((OISS,volume 1))

Abstract

Optical fiber sensors have been researched now for a number of years and a wide body of knowledge has been accumulated as witnessed by other chapters in this book. Although much of the initial development of these sensors was technology-driven, the most successful examples of fiber sensors are those where one or more of the often-cited benefits of fiber sensors brings a fundamental advantage to a particular application. For example, the fiber gyroscope has been able to compete on cost with the laser gyroscope and yet retain some of the advantages of the latter, e.g. zero spool-up time and complete elimination of moving parts. More generally, certain industries have noted the benefits that all-dielectric sensors could bring, in particular the gas and electricity supply industries, where the removal of electrical sensors has significant and specific advantages. In both cases, these are industries where statutory requirements on safety and security of supply (passed on to suppliers in the form of requirements for very long term product guarantees) have forced a certain degree of caution in the introduction of new technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnoski, M. K. and Jensen, S. M. (1976) Appl. Optics, 15, 2112–2115.

    Article  Google Scholar 

  2. Hartog, A. H. and Gold, M. P. (1984) J. Lightwave Technol., LT-2, 76–82.

    Google Scholar 

  3. Neumann, E.-G. (1980) AEU, 34, 157–160.

    Google Scholar 

  4. Hartog, A. H. (1983) J. Lightwave Technol., LT-1, 498–509.

    Article  Google Scholar 

  5. Fairies, M. C. et al. (1986) Electron. Lett., 22, 418–419.

    Article  Google Scholar 

  6. Ferdinand, P. (1990) PhD Thesis, Nice.

    Google Scholar 

  7. Ross, J. N. (1981) Electron. Lett., 17, 596–597.

    Article  Google Scholar 

  8. Claus, R. O. et al. (1985) Froc. SPIE, 566, 243–248.

    Google Scholar 

  9. Gottlieb, M. and Brandt, G. B. (1981) Appl Optics, 20, 3867–3873.

    Article  Google Scholar 

  10. Pinchbeck, D. and Kitchen, C. A. (1985) Proceedings Electronics in Oil and Gas, London.

    Google Scholar 

  11. Hartog, A. H. et al. (1980) Proceedings 6th European Conference on Optical Communication (post-deadline session), York, UK.

    Google Scholar 

  12. Rogers, A. J. (1980) Electron. Lett., 16, 489.

    Article  Google Scholar 

  13. Fabelinskii, I. L. (1968) Molecular Light Scattering. Plenum Press, New York.

    Book  Google Scholar 

  14. Hartog, A. H. et al. (1985) Electron. Lett., 21, 1061–3.

    Article  Google Scholar 

  15. Tanabe, Y. et al. (1989) Proceedings OFS, Paris, September, p. 537.

    Google Scholar 

  16. DTS System-II, York Sensors Ltd, Chandler’s Ford, UK.

    Google Scholar 

  17. Farries, M. C. and Rogers, A. J. (1984) Proceedings 2nd International Conference on Optic Fibre Sensors, Stuttgart, September, pp. 121-32.

    Google Scholar 

  18. Valis, T. et al. (1988) Proc. SPIE, 954, paper 83.

    Google Scholar 

  19. Dakin, J. P. (1987) Proc. SPIE, 798, 149–155.

    Google Scholar 

  20. Ahmed, S. U. et al. (1992) Optics Lett., 17, 643–645.

    Article  Google Scholar 

  21. Shibata, T. (1987) Optics Lett., 12, 269–271.

    Article  Google Scholar 

  22. Culverhouse, D. et al. (1989) Electron. Lett., 25, 913–914.

    Article  Google Scholar 

  23. Horiguchi, T. et al. (1989) IEEE Photon. Technol Lett., 1, 107–108.

    Article  Google Scholar 

  24. Tateda, M. et al. (1990) J. Lightwave Technol, 8, 1269–1272.

    Article  Google Scholar 

  25. Trutna, W. R. et al. (1987) Optics Lett., 12, 248–250.

    Article  Google Scholar 

  26. Dakin, J. P., Wade, C. A. and Henning, M. L. (1984) Electron. Lett., 20, 53–54.

    Article  Google Scholar 

  27. Franks, R. B. et al. (1985) Proc. SPIE, 586, 84–89.

    Google Scholar 

  28. Nakayama, J. et al. (1987) AppL Optics, 26, 440–443.

    Article  Google Scholar 

  29. MacDonald, R. I. (1981) Appl. Optics, 20, 1840–4.

    Article  Google Scholar 

  30. Venkatesh, S. and Dolfi, D. W. (1990) Appl Optics, 29, 1323–6.

    Article  Google Scholar 

  31. Healey, P. (1981) Proceedings 7th European Conference on Optical Communication, pp. 5.2.1-4.

    Google Scholar 

  32. Bernard, J. J. et al. (1984) Symposium on Optical Fibers Measurements, Boulder, Co., NBS Publication 683, pp. 95–98.

    Google Scholar 

  33. Bernard, J. J. and Depresles, E. (1987) Proc. SPIE, 838, 206–209.

    Google Scholar 

  34. Everard, J. K. A. (1989) Electron. Lett., 25, 140–142.

    Article  Google Scholar 

  35. Nazarathy, M. et al. (1989) J. Lightwave Technol, LT-7, 24–38.

    Article  Google Scholar 

  36. Healey, P. et al. (1982) Electron. Lett., 18, 862–863.

    Article  Google Scholar 

  37. Healey, P. (1984) Electron. Lett., 20, 30–32.

    Article  Google Scholar 

  38. Eickoff, W. and Ulrich, R. (1981) Appl. Phys. Lett., 39, 693–695.

    Article  Google Scholar 

  39. Uttam, D. et al. (1985) J. Lightwave Technol, LT-3, 971–976.

    Article  Google Scholar 

  40. Sorin, W. V. and Donald, D. K, (1990) Symposium on Optical Fibre Measurements, Boulder, Co., NBS Publication 792, pp. 27–30.

    Google Scholar 

  41. Stierlin, R. et al. (1987) Appl Optics, 26, 1368–1370.

    Article  Google Scholar 

  42. Stein, J. (1989) EPRI Survey, Electrical Power Research Institute, Palo Alto, Ca., June.

    Google Scholar 

  43. Marcus, M. et al. (1989) SPIE Boston, September 6-8.

    Google Scholar 

  44. Norman, S. R. et al. (1992) Presented at IEE Colloquium on Fibre Optics Sensor Technology, London, May 29.

    Google Scholar 

  45. Oscroft, G. (1987) J. Opt. Fibre Sensors, 2, 269–279.

    Google Scholar 

  46. Moore, S. R. and Weinberg, F. J. (1983) Proc. R. Soc. Lond. A, 385, 373.

    Article  Google Scholar 

  47. Tortoiseshell, G. (1985) Fibre Optics’ 85, Proc. SPIE, 522, 132–139.

    Article  Google Scholar 

  48. Tortoiseshell, G. (1990) Proc. SPIE, 1266, paper 14.

    Google Scholar 

  49. Hills, P. C. et al. (1991) Proceedings 7th International Conference on Optical Fibre Sensors, Sydney, Australia.

    Google Scholar 

  50. Petersen, R. C. and Sliney, D. H. (1986) Appl. Optics, 25, 1038–1047.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hartog, A.H. (1995). Distributed fiber-optic sensors. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optical and Quantum Electronics Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1210-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1210-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4530-8

  • Online ISBN: 978-94-011-1210-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics