Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 387))

Abstract

Research on the forcing of atmospheric planetary waves, their propagation, their interactions with the mean zonal flow, and their influence on ozone transport is reviewed. Previous GCM and idealized modeling work on the forcing mechanisms for extratropical planetary waves in the troposphere and middle atmosphere has given contradictory results. Some studies indicate that orographic forcing is dominant while others have indicated that the forcing from diabatic heating is at least of equal importance. Some analyses of observed planetary wave structures support the latter view. The evolution of planetary wave propagation from the pioneering work of Chamey and Drazin is reviewed. In particular, the question of whether zero wind lines absorb or reflect is emphasized. It is argued that observational evidence shows signatures of both behaviors. The conditions for planetary wave noninteraction are briefly discussed, and some observations are shown indicating that in the Southern Hemisphere, the relatively small size of the planetary wave forcing leads to the situation where planetary waves reach their largest amplitudes during the equinox seasons whereas in the Northern Hemisphere the planetary waves have their largest amplitudes in winter. The results of some modeling and theoretical work relevant to this interhemispheric difference in planetary waves are reviewed. Finally, it is argued that planetary wave behavior determines the difference in the ozone transport between the Northern and Southern Hemispheres. In particular, since planetary wavenumber 1 is dominant in this regard, the ozone transport behavior generally follows that of wavenumber 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpert, J. C., Geller, M.A., and Avery, S. K., (1983) “The response of stationary planetary waves to tropospheric forcing”. J. Atmos. Sci., 40, 2467–2483.

    Article  Google Scholar 

  • Andrews, D. G., Holton, J. R. and Leovy, C. B., (1987) “ Middle Atmosphere Dynamics”, Academic Press, Inc., New York, 489 pp.

    Google Scholar 

  • Andrews, D. G., and McIntyre, M. E., (1976) “Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration”. J. Atmos. Sci., 33, 2031–2048.

    Article  Google Scholar 

  • Benney, D., and Bergeron, R. E., (1969) “A new class of nonlinear waves in parallel flows”. Stud. Appl. Math., 48, 181–204.

    Google Scholar 

  • Boyd, J. P., (1976) “The noninteraction of waves with the zonally averaged flow on a spherical earth and the interrelationships of eddy fluxes of energy, heat, and momentum”. J. Atmos. Sci., 33, 2285–2291.

    Article  Google Scholar 

  • Chamey, J. G., and Drazin, P. G., (1961) “Propagation of planetary-scale disturbances from the lower into the upper atmosphere”. J. Geophys. Res., 66, 83–109.

    Article  Google Scholar 

  • Chamey, J. G., and Eliassen, A. (1949) “A numerical method for predicting the perturbations of the middle latitude westerlies”. Tellus, 1, 38–54.

    Article  Google Scholar 

  • Dickinson, R. E., (1968) “Planetary Rossby waves propagating vertically through weak westerly wind wave guides”. J. Atmos. Sci., 25, 984–1002.

    Article  Google Scholar 

  • Dickinson, R. E., (1969) “Vertical propagation of planetary Rossby waves through an atmosphere with Newtonian cooling”. J. Geophys. Res., 74, 929–938.

    Article  Google Scholar 

  • Dickinson, R. E., and Geisler, J. E. (1974) “Numerical study of an interacting Rossby wave and barotropic zonal flow near a critical level”. J. Atmos. Sci., 31, 946–955.

    Article  Google Scholar 

  • Geller, M. A., and Avery, S. K. (1978) “Northern hemisphere distributions of diabatic heating in the troposphere derived from general circulation data”. Mon. Wea. Rev., 106, 629–636.

    Article  Google Scholar 

  • Geller, M. A., Rood, R. B. and Kaye, J. A. (1989) “A strategy for using general circulation models and satellite data for improving understanding of the stratosphere”. To appear in Proceedings of the International Symposium on Middle Atmospheric Studies held in Dushanbe, USSR, November 12–19, 1989.

    Google Scholar 

  • Geller, M. A., and Wu, M.-F. (1987) “Troposphere-stratosphere general circulation statistics. Transport Processes in the Middle Atmosphere”, G. Visconti and R. Garcia (eds.), D. Reidel Publishing Co., Dordrect, 3–17.

    Google Scholar 

  • Geller, M. A., Wu, M.-F., and Gelman, M. E. (1983) “Troposphere-stratosphere (surface-55 km) monthly winter general circulation statistics for the Northern Hemisphere - four year averages”. J. Atmos. Sci., 40, 1334–1352.

    Article  Google Scholar 

  • Haynes, P. H., (1985) “Nonlinear instability of a Rossby-wave critical layer”. J. Fluid. Mech., 493–511.

    Google Scholar 

  • Held, I. M., and Ting, M. (1990) “Orographic versus thermal forcing of stationary waves: the importance of the mean low-level wind”. J. Atmos. Sci., 41, 495–500.

    Article  Google Scholar 

  • Hirota, I., Hirooka, T., and Shiotani, M. (1983) “Upper atmosphere circulations in the two hemispheres observed by satellites”. Ouart. J. Roy. Met. Soc., 109, 443–454.

    Article  Google Scholar 

  • Holton, J. R., and Wehrbein, W. M. (1980) “The role of forced planetary waves in the annual cycle of the zonal mean circulation of the middle atmosphere”. J. Atmos. Sci., 31, 1968–1983.

    Article  Google Scholar 

  • Huang, R-h., and Gambo, K. (1982) “The response of a hemispheric multi-level model atmosphere to forcing by topography and stationary heat sources. (I)Forcing by topography”. J. Meteor. Soc. Japan, 60, 78–92.

    Google Scholar 

  • Huang, R-h., and Gambo, K. (1982) “The response of a hemispheric multi-level model atmosphere to forcing by topography and stationary heat sources. (II) Forcing by stationary heat sources and forcing by topography and stationary heat sources”. J. Meteor. Soc. Japan, 60, 93–107.

    Google Scholar 

  • Jacqmin, D., and Lindzen, R. S. (1985) “The causation and sensitivity of the northern winter planetary waves”. J. Atmos. Sci., 42, 724–745.

    Article  Google Scholar 

  • Killworth, P. D., and McIntyre, M. E. (1985) “Do Rossby-wave critical layers absorb, reflect, or over-reflect”? J. Fluid Mech., 161, 449–492.

    Article  Google Scholar 

  • Lau, N.-C., (1979) “The observed structure of tropospheric stationary waves and the local balances of vorticity and heat”. J. Atmos. Sci., 36, 996–1016.

    Google Scholar 

  • Leovy, C. B., Sun, C.-R., Hitchman, M. H., Remsberg, E. E., Russell III, J. M., Gordley, L. L., Gille, J.C., and Lyjak, L. V. (1985) “Transport of ozone in the middle stratosphere: evidence for planetary wave breaking”. J. Atmos. Sci., 42, 230–244.

    Article  Google Scholar 

  • Lin, B., (1982) “The behavior of winter stationary planetary waves forced by topography and diabatic heating”. J. Atmos. Sci., 32, 1206–1226.

    Article  Google Scholar 

  • McIntyre, M. E., and Palmer, T. N. (1984) “The ”surf zone“ in the stratosphere”. J. Atmos. Terr. Phys., 46, 825–849.

    Article  Google Scholar 

  • Matsuno, T., (1970) “Vertical propagation of stationary planetary waves in the winter Northern Hemisphere”. J. Atmos. Sci., 27, 871–883.

    Article  Google Scholar 

  • Nigam, S., Held, I. M., and Lyons, S. W. (1986) “Linear simulation of the stationary eddies in a general circulation model. Part II: The no-mountain model”. J. Atmos. Sci., 43, 2944–2961.

    Article  Google Scholar 

  • Nigam, S., Held, I. M., and Lyons, S.W. (1988) “Linear simulation of the stationary eddies in a GCM. Part II: The ”mountain“ model”. J. Atmos. Sci., 45, 1433–1452.

    Article  Google Scholar 

  • Palmer, T. N., (1981) “Diagnostic study of a wavenumber-2 stratospheric sudden warming in a transformed Eulerian-mean formalism”. J. Atmos. Sci., 38, 844–855.

    Article  Google Scholar 

  • Plumb, R. A., (1985) “On the three-dimensional propagation of stationary waves”. J. Atmos. Sci., 42, 217–229.

    Article  Google Scholar 

  • Plumb, R. A., (1989) “On the seasonal cycle of stratospheric planetary waves”. Pure Appl. Geophys., 130, 233–242.

    Article  Google Scholar 

  • Rood, R. B., (1983) “Transport and the seasonal variation of ozone”. Pure. Appl. Geophys., 121, 1049–1064.

    Article  Google Scholar 

  • Rood, R. B., and Schoeberl, M. R. (1983) “Ozone transport by diabatic and planetary wave circulations on a n-plane”. J. Geophys. Res., 88, 8491–8504.

    Article  Google Scholar 

  • Schoeberl, M. R., and Geller, M. A. (1977) “A calculation of the structure of stationary planetary waves in winter”. J. Atmos. Sci., 34, 1235–1255.

    Article  Google Scholar 

  • Smagorinsky, J., (1953) “The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere”. Ouart. J. Roy. Meteor. Soc., 79, 342–366.

    Article  Google Scholar 

  • Tung, K. K., and Lindzen, R. S. (1979) “A theory of stationary long waves. Part II: Resonant Rossby waves in the presence of realistic vertical shears”. Mon. Wea. Rev., 107, 735–750.

    Article  Google Scholar 

  • Valdes, P. J., and Hoskins, B. J. (1989) “Linear stationary wave simulations of the time-mean climatological flow”. J. Atmos. Sci., 46, 2509–2527.

    Article  Google Scholar 

  • Valdes, P. J., and Hoskins, B. J. (1991) “Nonlinear orographically forced planetary waves”. J Atmos. Sci., 48, 2089–2106.

    Article  Google Scholar 

  • Warn. T., and Warn, H. (1978) “The evolution of a nonlinear critical level”. Stud. Aopl. Math., 59, 37–71.

    Google Scholar 

  • Wirth, V, (1991) “What causes the seasonal cycle of stationary waves in the southern stratosphere”? J. Atmos. Sci, 48, 1194–1200.

    Article  Google Scholar 

  • Wu, M.-F., Geller, M. A., Olson, J. G., and Larson, E. M. (1987) “A study of global transport and the role of planetary wave using satellite data”. J. Geophys. Res., 92, 3081–3097.

    Article  Google Scholar 

  • Yoden, S., (1990) “An illustrative,model of seasonal and interannual variations of the stratospheric circulation”. J. Atmos. Sci., 47, 1845–1853.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Geller, M.A. (1993). Planetary Wave Coupling - Obervations and Theory. In: Thrane, E.V., Blix, T.A., Fritts, D.C. (eds) Coupling Processes in the Lower and Middle Atmosphere. NATO ASI Series, vol 387. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1594-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1594-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4694-7

  • Online ISBN: 978-94-011-1594-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics