Skip to main content

Biodegradation of components of petroleum

  • Chapter
Biochemistry of microbial degradation

Abstract

Petroleum can be defined as a naturally-derived organic material that is composed primarily of hydrocarbon compounds and held in geological traps. The liquid fraction of this is crude oil. Crude oils are essentially produced by high pressure and temperature action on biological material over geological time-scales. The variability of all of these factors means that there is great variability in the chemical composition and properties of different crude oils. Furthermore, refined products from different crudes will have different chemical composition even though the products meet the relevant physical and performance standards. The aim of this paper is to review the biochemical and physiological mechanisms involved in the biodegradation of components of crude oil and petroleum products that are not gaseous under physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeckersberg F, Bak F and Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to C by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156: 5–14.

    CAS  Google Scholar 

  • Anderson MS, Hall RA and Griffin M (1980) Microbial metabolism of alicyclic hydrocarbol cyclohexane catabolism by a pure strain of Pseudomonas sp. J. Gen. Microbiol. 120: 89–94.

    CAS  Google Scholar 

  • Anthony C (1980) Methanol as substrate: theoretical aspects. In: DEF Harrison, IJ Higgins and Watkinson (eds) Hydrocarbons in Biotechnology (pp 35-57). Heyden, London.

    Google Scholar 

  • Arai Y and Yamada K (1969) Studies on the utilization of hydrocarbons by microorganisms. X Screening of alicyclic hydrocarbon-assimilating microorganisms and trans-4-ethylcyclohexar formation from ethylcyclohexane. Agric. Biol. Chem. 33: 63–68.

    CAS  Google Scholar 

  • Arvin E, Jensen B, Aamand J and Jorgensen C (1988) The potential of free-living ground wa1 bacteria to degrade aromatic hydrocarbons and heterocyclic compounds. Water Sci. Techno 20: 109–118.

    CAS  Google Scholar 

  • Arvin E, Jensen B, Godsy EM and Grbić-Galić D (1989) Microbial degradation of oil and creose related aromatic compounds under aerobic and anaerobic conditions. In: YC Wu (ed.,) International Conference on Physiochemical and Biological Detoxification of Hazardo Wastes (pp 828–847). Technomic, Lancaster, Pennsylvania.

    Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmen perspective. Microbiol. Rev. 45: 180–209.

    PubMed  CAS  Google Scholar 

  • Atlas RM (1989) Biodegradation of hydrocarbons in the environment. In: GS Omenn (ed.,) Environmental Biotechnology. Reducing Risks from Environmental Chemicals Throu Biotechnology (pp 211–222). Plenum Press, New York.

    Google Scholar 

  • Azoulay E, Choteau J and Davidovics G (1963) Isolement et characterization des enzym responsables de l’oxidation des hydrocarbures. Biochim. Biophys. Acta 77: 554–567.

    CAS  Google Scholar 

  • Banks RE and King PJ (1984) Chemistry and physics of petroleum. In: GD Hobson (ed) Mode Petroleum Technology (pp 279–327). Wiley, Chichester.

    Google Scholar 

  • Bassel JB and Mortimer RK (1985) Identification of mutations preventing n-hexadecane upta among 26 n-alkane non-utilizing mutants of Yarrowia (Saccharomycopsis) lipolytica. Curr. Genet. 9: 579–586.

    CAS  Google Scholar 

  • Bayona JM, Albaiges J, Solanas AM, Pares R, Garrigues P and Ewald M (1986) Selective aerot degradation of methyl-substituted polycyclic hydrocarbons in petroleum by pure microbol. cultures. Int. J. Environ. Anal. Chem. 23: 289–303.

    CAS  Google Scholar 

  • Beam HW and Perry JJ (1974a) Microbial degradation of cycloparaffinic hydrocarbons via c metabolism and commensalism. J. Gen. Microbiol. 82: 163–166.

    Google Scholar 

  • Beam HW and Perry JJ (1974b) Microbial degradation and assimilation of n-alkyl-substitut cycloparaffins. J. Bacteriol. 118: 394–399.

    PubMed  CAS  Google Scholar 

  • Benson S, Fennewald M, Shapiro J and Huettner C (1977) Fractionation of inducible alka hydroxylase activity in Pseudomonas putida and characterization of hydroxylase-negati plasmid mutations. J. Bacteriol. 132: 614–621.

    PubMed  CAS  Google Scholar 

  • Blasig R, Mauersberger S, Riege P, Schunk WH, Jockish W, Franke P and Mueller HG (1988 Degradation of long-chain n-alkanes by the yeast Candida maltosa. II. Oxidation of n-alkan and intermediates using microsomal membrane fractions. Appl. Microbiol. Biotechnol. 2 589–597.

    Google Scholar 

  • Blasig R, Huth J, Franke P, Borneleit P, Schunk WH and Mueller HG (1989) Degradation of lon chain n-alkanes by the yeast Candida maltosa. III. Effect of solid n-alkanes on cellular fatty ac composition. Appl. Microbiol. Biotechnol. 31: 571–576.

    CAS  Google Scholar 

  • Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. In: DT Gibson (ed) Microbiol. Degradation of Organic Compounds (pp 89–129). Marcel Dekker, New York.

    Google Scholar 

  • Brune G, Schoberth SM and Sahm H (1983) Growth of a strictly anaerobic bacterium on furfur (2-furaldehyde). Appl. Environ. Microbiol. 46: 1187–1192.

    PubMed  CAS  Google Scholar 

  • Cameotra SS and Singh HD (1990) Uptake of volatile n-alkanes by Pseudomonas PG-1. J. Bios 15: 313–322.

    CAS  Google Scholar 

  • Carson DB and Cooney JJ (1988) Spheroplast formation and partial purification of microbodies from hydrocarbon-grown cells of Cladosporium resinae. J. Ind. Microbiol. 3: 111–117.

    CAS  Google Scholar 

  • Carson DB and Cooney JJ (1989) Characterization of partially purified microbodies from hydrocarbon-grown cells of Cladosporium resinae. Can. J. Microbiol. 35: 565–572.

    CAS  Google Scholar 

  • Chakrabarty AM, Chou G and Gunsalus IC (1973) Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc. Natl. Acad. Sci. U.S.A. 70: 1137–1140.

    PubMed  CAS  Google Scholar 

  • Cooney JJ, Siporin C and Smucker RA (1980) Physiological and cytological responses to hydrocarbons by the hydrocarbon-using fungus Cladosporium resinae. Bot. Mar. 23: 227–232.

    CAS  Google Scholar 

  • Cox RE, Maxwell JR and Myers RN (1976) Monocarboxylic acids from oxidation of acyclic isoprenoid alkanes by Mycobacterium fortuitum. Lipids 11: 72–76.

    PubMed  CAS  Google Scholar 

  • Delaune RD, Hambrick GA and Patrick WH (1980) Degradation of hydrocarbons in oxidized and reduced sediments. Mar. Pollut. Bull. 11: 103–106.

    CAS  Google Scholar 

  • Dias FF and Alexander M (1971) Effect of chemical structure on the biodegradability of aliphatic acids and alcohols. Appl. Microbiol. 22: 1114–1118.

    PubMed  CAS  Google Scholar 

  • Eastcott L, Shiu WY and Mackay D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem. Pollut. 4: 191–216.

    CAS  Google Scholar 

  • Eggink G, Lageveen RG, Altenburg B and Witholt B (1987a) Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. J. Biol. Chem. 262: 17712–17718.

    PubMed  CAS  Google Scholar 

  • Eggink G, van Lelyveld PH, Arnberg A, Arfman N and Witholt B (1987b) Structure of the Pseudomonas putida alkBAC Operon. Identification of transcription and translation products. J. Biol. Chem. 262: 6400–6406.

    PubMed  CAS  Google Scholar 

  • Eggink G, Engel H, Meijer WG, Otten J, Kingma J and Witholt B (1988) Alkane utilization in Pseudomonas oleovorans. Structure and function of the regulatory locus alkR. J. Biol. Chem. 263: 13400–13405.

    PubMed  CAS  Google Scholar 

  • Ensley BD (1984) Microbial metabolism of condensed thiophenes. In: DT Gibson (ed) Microbial Degradation of Organic Compounds (pp 309–317). Marcel Dekker, New York.

    Google Scholar 

  • Evans JS (1989) Genetic and biochemical studies of microbial degradation of thiophenes. Ph.D. thesis, University of Wales College of Cardiff.

    Google Scholar 

  • Evans JS and Venables WA (1990) Degradation of thiophene-2-carboxylate, furan-2-carboxylate, pyrrole-2-carboxylate and other thiophene derivatives by the bacterium Vibrio YC1. Appl. Microbiol. Biotechnol. 32: 715–720.

    PubMed  CAS  Google Scholar 

  • Fedorak PM and Grbic-Galic D (1991) Aerobic microbial cometabolism of benzothiophene and 3-methylbenzothiophene. Appl. Environ. Microbiol. 57: 932–940.

    PubMed  CAS  Google Scholar 

  • Fedorak PM and Westlake DWS (1983) Microbial degradation of organic sulfur compounds in Prudhoe Bay crude oil. Can. J. Microbiol. 29: 291–296.

    CAS  Google Scholar 

  • Fedorak PM and Westlake DWS (1984) Degradation of sulfur heterocycles in Prudhoe Bay crude oil by soil enrichments. Water Air Soil Pollut. 21: 225–230.

    CAS  Google Scholar 

  • Fedorak PM, Payzant JD, Montgomery DS and Westlake DWS (1988) Microbial degradation of n-alkyl tetrahydrothiophenes found in petroleum. Appl. Environ. Microbiol. 54: 1243–1248.

    PubMed  CAS  Google Scholar 

  • Feinberg EL, Ramage PIN and Trudgill PW (1980) The degradation of n-alkylcycloalkanes by a mixed bacterial culture. J. Gen. Microbiol. 121: 507–511.

    CAS  Google Scholar 

  • Fennewald M and Shapiro J (1977) Regulatory mutations of the Pseudomonas plasmid alk regulon. J. Bacteriol. 132: 622–627.

    PubMed  CAS  Google Scholar 

  • Fennewald M and Shapiro J (1979) Transposition of Tn7 in Pseudomonas aeruginosa and isolation of alkr::Tn7 mutations. J. Bacteriol. 139: 264–269.

    PubMed  CAS  Google Scholar 

  • Fennewald M, Benson S, Oppici M and Shapiro J (1979) Insertion element analysis and mapping of the Pseudomonas plasmid alk region. J. Bacteriol. 139: 940–952.

    PubMed  CAS  Google Scholar 

  • Finnerty WR (1984) The application of hydrocarbon-utilizing microorganisms for lipid production. AOCS Monogr. 11: 199–215.

    CAS  Google Scholar 

  • Finnerty WR and Singer ME (1985) Membranes of hydrocarbon-utilizing microorganisms. In: BK Ghosh (ed) Organization of Prokaryotic Cell Membranes, Volume III (pp 1–44). CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Foght JM and Westlake DWS (1988) Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can. J. Microbiol. 34: 1135–1141.

    PubMed  CAS  Google Scholar 

  • Foght JM and Westlake DWS (1990) Expression of dibenzothiophene-degradative genes in two Pseudomonas species. Can. J. Microbiol. 36: 718–724.

    PubMed  CAS  Google Scholar 

  • Fortnagel P, Harms H, Wittich R-M, Krohn S, Meyer H, Sinnwell V, Wilkes H and Francke W (1990) Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl. Environ. Microbiol. 56: 1148–1156.

    PubMed  CAS  Google Scholar 

  • Fredrickson JK, Brockman FJ, Workman DJ, Li SW and Stevens TO (1991) Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl. Environ. Microbiol. 57: 796–803.

    PubMed  CAS  Google Scholar 

  • Fukui S and Tanaka A (1979) Peroxisomes of alkane-and peroxisome-grown yeasts: metabolic functions and practical applications. J. Appl. Biochem. 1: 171–201.

    CAS  Google Scholar 

  • Goswami P and Singh HD (1991) Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol. Bioeng. 37: 1–11.

    PubMed  CAS  Google Scholar 

  • Grbic-Galic D (1990) Anaerobic microbial transformation of nonoxygenated aromatic and alicyclic compounds in soil, subsurface, and freshwater sediments. In: J-M Bollag and G Stotzky (eds) Soil Biochemistry, Volume 6 (pp 117–189). Marcel Dekker, New York.

    Google Scholar 

  • Griffin WM and Cooney JJ (1979) Degradation of model recalcitrant hydrocarbons by microorganisms from freshwater ecosystems. Dev. Ind. Microbiol. 20: 479–488.

    Google Scholar 

  • Griffin WM and Traxler RW (1981) Some aspects of hydrocarbon metabolism by Pseudomonas. Dev. Ind. Microbiol. 22: 425–435.

    CAS  Google Scholar 

  • Grund A, Shapiro J, Fennewald M, Bacha P, Leahy J, Markbreiter K, Nieder M and Toepfer M (1975) Regulation of alkane oxidation in Pseudomonas putida. J. Bacteriol. 123: 546–556.

    PubMed  CAS  Google Scholar 

  • Hambrick GA, Delaune RD and Patrick WH (1980) Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Appl. Environ. Microbiol. 40: 365–369.

    PubMed  CAS  Google Scholar 

  • Hammond MW and Alexander M (1972) Effect of chemical structure on microbial degradation of methyl-substituted aliphatic acids. Environ. Sci. Technol. 6: 732–735.

    CAS  Google Scholar 

  • Hartmans S, de Bont JAM and Harder W (1989) Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol. Rev. 63: 235–264.

    CAS  Google Scholar 

  • Hommel R and Ratledge C (1990) Evidence for two fatty alcohol oxidases in the biosurfactant-producing yeast Candida (Torulopsis) bombicola. FEMS Microbiol. Lett. 70: 183–186.

    CAS  Google Scholar 

  • Jensen BK, Arvin E and Gundersen AT (1988) Biodegradation of nitrogen-and oxygen-containing aromatic compounds in groundwater from an oil-contaminated aquifer. J. Contam. Hydrol. 3: 65–75.

    CAS  Google Scholar 

  • Kanagawa T and Kelly DP (1987) Degradation of thiophenes by bacteria isolated from activated sludge. Microb. Ecol. 13: 47–57.

    CAS  Google Scholar 

  • Kappeli O and Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Candida tropicalis. J. Bacteriol. 140: 707–712.

    PubMed  CAS  Google Scholar 

  • Kargi F (1987) Biological oxidation of thianthrene, thioxanthine and dibenzothiophene by the thermophilic organism Sulfolobus acidocaldarius. Biotechnol. Lett. 9: 478–482.

    CAS  Google Scholar 

  • Kemp GD, Dickenson FM and Ratledge C (1988) Inducible long chain alcohol oxidase from alkane-grown Candida tropicalis. Appl. Microbiol. Biotechnol. 29: 370–374.

    CAS  Google Scholar 

  • Kennicutt MC (1988) The effect of biodegradation on crude oil bulk and molecular composition. Oil Chem. Pollut. 4: 89–112.

    CAS  Google Scholar 

  • Killops SD and Al-Juboori MAHA (1990) Characterization of the unresolved complex mixture (UCM) in the gas chromatograms of biodegraded petroleums. Org. Geochem. 15: 147–160.

    CAS  Google Scholar 

  • Kirk PW and Gordon AS (1988) Hydrocarbon degradation by filamentous marine higher fungi. Mycologia 80: 776–782.

    CAS  Google Scholar 

  • Koch AK, Kapelli O, Fiechter A and Keiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J. Bacteriol. 173: 4212–4219.

    PubMed  CAS  Google Scholar 

  • Kok M, Oldenhuis R, van der Linden MPG, Raatjes P, Kingma J, van Lelyveld PH and Witholt B (1989) The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J. Biol. Chem. 264: 5435–5441.

    PubMed  CAS  Google Scholar 

  • Kuhn EP and Suflita JM (1989) Anaerobic biodegradation of nitrogen-substituted and sulfontated benzene aquifer contaminants. Hazard. Waste Hazard. Mater. 6: 121–133.

    CAS  Google Scholar 

  • Kurita S, Endo T, Nakamura H, Yagi T and Tamiya N (1971) Decomposition of some organic sulfur compounds in petroleum by anaerobic bacteria. Appl. Microbiol. 17: 185–198.

    CAS  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G and Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl. Environ. Microbiol. 54: 2924–2932.

    PubMed  CAS  Google Scholar 

  • Leahy JG and Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305–315.

    PubMed  CAS  Google Scholar 

  • Lindley ND and Heydeman MT (1986) Mechanism of dodecane uptake by whole cells of Cladosporium resinae. J. Gen. Microbiol. 132: 751–756.

    CAS  Google Scholar 

  • Lindley ND and Heydeman MT (1988) The uptake of n-alkanes from alkane mixtures during growth of the hydrocarbon-utilizing fungus Cladosporium resinae. Appl. Microbiol. Biotechnol. 23: 384–388.

    Google Scholar 

  • Linton JD and Stephenson RJ (1978) A preliminary study on growth yields in relation to the carbon and energy content of various organic growth substrates. FEMS Microbiol. Lett. 3: 95–98.

    CAS  Google Scholar 

  • Lloyd-Jones G and Trudgill PW (1989) The degradation of alicyclic hydrocarbons by a microbial consortium. Int. Biodet. 25: 197–206.

    CAS  Google Scholar 

  • Mackenzie AS (1984) Applications of biological markers in petroleum geochemistry. In: J Brooks and D Weite (eds) Advances in Petroleum Geochemistry, Volume 1 (pp 115–214). Academic Press, London.

    Google Scholar 

  • Magor AM, Warburton J, Trower MK and Griffin M (1986) Comparative study of the ability of three Xanthobacter species to metabolise cycloalkanes. Appl. Environ. Microbiol. 52: 665–671.

    PubMed  CAS  Google Scholar 

  • McKenna EJ and Kallio RE (1971) Microbial metabolism of the isoprenoid alkane pristane. Proc. Natl. Acad. Sci. U.S.A. 68: 1552–1554.

    PubMed  CAS  Google Scholar 

  • Miall LM (1980) Organic acid production from hydrocarbons. In: DEF Harrison, IJ Higgins and RJ Watkinson (eds) Hydrocarbons in Biotechnology (pp 25–34). Heyden, London.

    Google Scholar 

  • Mille G, Mulyono M, El Jammel T and Bertrand J-C (1988) Effects of oxygen on hydrocarbon degradation studies in vitro in surficial sediments. Estuarine Coast. Shelf Sci. 27: 283–295.

    CAS  Google Scholar 

  • Miller RM and Bartha R (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkanes. Appl. Environ. Microbiol. 55: 268–274.

    Google Scholar 

  • Mohanrao GJ and McKinney RE (1962) A study of the biochemical characteristics of quaternary carbon compounds. Int. J. Air. Water Pollut. 6: 153–168.

    PubMed  CAS  Google Scholar 

  • Monticello DJ, Bakker D and Finnerty WR (1985) Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species. Appl. Environ. Microbiol. 49: 756–760.

    PubMed  CAS  Google Scholar 

  • Morgan P and Watkinson RJ (1989) Hydrocarbon degradation in soils and methods for soil biotreatment. Crit. Rev. Biotechnol. 8: 305–333.

    PubMed  CAS  Google Scholar 

  • Mormile MR and Atlas RM (1988) Mineralization of the dibenzothiophene biodegradation products 3-hydroxy-2-formyl benzothiophene and dibenzothiophene sulfone. Appl. Environ. Microbiol. 54: 3183–3184.

    PubMed  CAS  Google Scholar 

  • Mueller JG, Lantz SE, Blattmann BO and Chapman PJ (1991) Bench-scale evaluation of alternative biological treatment processes for the remediation of pentachlorophenol-and creosote-contaminated materials: slurry-phase bioremediation. Environ. Sci. Technol. 25: 1055–1061.

    CAS  Google Scholar 

  • Nakajima K and Sato A (1983) Microbial oxidation of isoprenoid hydrocarbons. Part IV. Microbial metabolism of isoprenoid alkane pristane. Nippon Nogei Kagaku Kaishi 57: 299–305.

    CAS  Google Scholar 

  • Nakajima K, Sato A, Takahara Y and Iida T (1985) Microbial oxidation of isoprenoid hydrocarbons. Part V. Microbial oxidation of isoprenoid alkanes, phytane, norpristane and farnesane. Agric. Biol. Chem. 49: 1993–2002.

    CAS  Google Scholar 

  • Nieder M and Shapiro J (1975) Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids. J. Bacteriol. 122: 93–98.

    PubMed  CAS  Google Scholar 

  • Oudot J, Ambles A, Bourgeouis S, Gatellier C and Sebyera N (1989) Hydrocarbon infiltration and biodegradation in a land-farming experiment. Environ. Pollut. 59: 17–40.

    PubMed  CAS  Google Scholar 

  • Owen DJ (1986) Molecular cloning and characterization of sequences from the regulatory cluster of the Pseudomonas plasmid alk system. Mol. Gen. Genet. 203: 64–72.

    PubMed  CAS  Google Scholar 

  • Parekh VR, Traxler RW and Sobek JM (1977) n-Alkane oxidation enzymes of a pseudomonad. Appl. Environ. Microbiol. 33: 881–884.

    PubMed  CAS  Google Scholar 

  • Parsons JR, Opperhuizen A and Hutzinger O (1987) Influence of membrane permeation on biodegradation kinetics of hydrophobic compounds. Chemosphere 16: 1361–1370.

    CAS  Google Scholar 

  • Perry JJ (1984) Microbial metabolism of cyclic alkanes. In: RM Atlas (ed) Petroleum Microbiology (pp 61–97). Macmillan, New York.

    Google Scholar 

  • Pirnik MP (1977) Microbial oxidation of methyl branched alkanes. CRC Crit. Rev. Biotechnol. 5: 413–422.

    CAS  Google Scholar 

  • Pirnik MP, Atlas RM and Bartha R (1974) Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J. Bacteriol. 119: 868–878.

    PubMed  CAS  Google Scholar 

  • Pritchard PH and Costa CF (1991) EPA’s Alaska oil spill bioremediation project. Environ. Sci. Technol. 25: 372–379.

    CAS  Google Scholar 

  • Ratledge C (1978) Degradation of aliphatic hydrocarbons. In: RJ Watkinson (ed) Developments in Biodegradation of Hydrocarbons — 1 (pp 1–46). Applied Science, London.

    Google Scholar 

  • Ratledge C (1984) Microbial conversions of alkanes and fatty acids. J. Am. Oil Chem. Soc. 6:447–453.

    Google Scholar 

  • Rehm HJ and Reiff I (1982) Regulation der mikrobiellen alkanoxidation mit hinblick auf die produktbildung. Acta Biotechnol. 2: 127–138.

    CAS  Google Scholar 

  • Rehm HJ, Hortmann L and Reiff I (1983) Regulation der Fettsaurebildung bei der mikrobiellen alkanoxidation. Acta Biotechnol. 3: 279–288.

    CAS  Google Scholar 

  • Rontani JF and Giusti G (1986) Study of the biodegradation of poly-branched alkanes by a marine bacterial community. Mar. Chem. 20: 197–205.

    CAS  Google Scholar 

  • Sanglard D and Fiechter A (1989) Heterogeneity within the alkane-inducible cytochrome P450 gene family of the yeast Candida tropicalis. FEBS Lett. 256: 128–134.

    PubMed  CAS  Google Scholar 

  • Sanglard D and Loper JC (1989) Characterization of the alkane-inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis: identification of a new P450 gene family. Gene 76: 121–136.

    PubMed  CAS  Google Scholar 

  • Sanglard D, Chen C and Loper JC (1987) Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis. Biochem. Biophys. Res. Comm. 144: 251–257.

    PubMed  CAS  Google Scholar 

  • Sanglard D, Beretta I, Wagner M, Kaeppeli O and Fiechter A (1990) Functional expression of the alkane-inducible monooxygenase system of the yeast Candida tropicalis in Saccharomyces cerevisiae. Biocatalysis 4: 19–28.

    CAS  Google Scholar 

  • Schaeffer TL, Cantwell SG, Brown JL, Watt DS and Fall RR (1979) Microbial growth on hydrocarbons: terminal branching inhibits biodegradation. Appl. Environ. Microbiol. 38: 742–746.

    PubMed  CAS  Google Scholar 

  • Schink B (1985) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol. Ecol. 31: 69–77.

    CAS  Google Scholar 

  • Schunck WH, Kaergel E, Gross B, Wiedmann B, Mauersberger S, Koepke K, Kiessling U, Strauss M and Gaestel M (1989) Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem. Biophys. Res. Comm. 161: 843–850.

    PubMed  CAS  Google Scholar 

  • Scott CCL and Finnerty WR (1976a) A comparative analysis of the ultrastructure of hydrocarbon-oxidizing microorganisms. J. Gen. Microbiol. 94: 342–350.

    PubMed  CAS  Google Scholar 

  • Scott CCL and Finnerty WR (1976b) Characterisation of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter sp. HO1-N. J. Bacteriol. 127: 481–489.

    CAS  Google Scholar 

  • Seigle-Murandi F, Krivobok S, Steiman R, Thiault GA and Benoit-Guyod JL (1991) Biotransformation of 2-acetylthiophene by micromycetes. Appl. Microbiol. Biotechnol. 34: 436–440.

    CAS  Google Scholar 

  • Shelton TB and Hunter JV (1975) Anaerobic decomposition of oil in bottom sediments. J. Water Poll. Control Fed. 47: 2256–2270.

    CAS  Google Scholar 

  • Shennan JL (1984) Hydrocarbons as substrates in industrial fermentations. In: RM Atlas (ed) Petroleum Microbiology (pp 643–683). Macmillan, New York.

    Google Scholar 

  • Singer ME and Finnerty WR (1984a) Microbial metabolism of straight-chain and branched alkanes. In: RM Atlas (ed) Petroleum Microbiology (pp 1–59). Macmillan, New York.

    Google Scholar 

  • Singer ME and Finnerty WR (1984b) Genetics of hydrocarbon-utilizing microorganisms. In: RM Atlas (ed) Petroleum Microbiology (pp 299–354). Macmillan, New York.

    Google Scholar 

  • Smucker RA and Cooney JJ (1981) Cytological responses of Cladosporium resinae when shifted from glucose to hydrocarbon medium. Can. J. Microbiol. 27: 1209–1218.

    CAS  Google Scholar 

  • Stirling LA, Watkinson RJ and Higgins IJ (1977) Microbial metabolism of alicyclic hydrocarbons: isolation and properties of acyclohexane-degrading bacterium. J. Gen. Microbiol. 99:119–125.

    CAS  Google Scholar 

  • Strubel V, Rast HG, Fietz W, Knackmuss H-J and Engesser KH (1989) Enrichment of dibenzofuran utilizing bacteria with high co-metabolic potential towards dibenzodioxin and other anellated aromatics. FEMS Microbiol. Lett. 58: 233–238.

    CAS  Google Scholar 

  • Sunairi M, Suzuki R, Takagi M and Yano K (1988) Self-cloning of genes for n-alkane assimilation from Candida maltosa. Agric. Biol. Chem. 52: 577–579.

    CAS  Google Scholar 

  • Takagi M, Ohkuma M, Kobayashi N, Watanabe M and Yano K (1989) Purification of cytochrome P-450alk from n-alkane-grown cells of Candida maltosa, and cloning and nucleotide sequencing of the encoded gene. Agric. Biol. Chem. 53: 2217–2226.

    CAS  Google Scholar 

  • Tonge GM and Higgins IJ (1974) Microbial metabolism of alicyclic hydrocarbons: growth of Nocardia petroleophila (NCIB 9438) on methylcyclohexane. J. Gen. Microbiol. 81: 521–524.

    PubMed  CAS  Google Scholar 

  • Trudgill PW (1978) Microbial degradation of alicyclic hydrocarbons. In: RJ Watkinson (ed) Developments in Biodegradation of Hydrocarbons — 1 (pp 47–84). Applied Science, London.

    Google Scholar 

  • Trudgill PW (1984a) Microbial degradation of the alicyclic ring. Structural relationships and metabolic pathways. In: DT Gibson (ed) Microbial Degradation of Organic Compounds (pp 131–180). Marcel Dekker, New York.

    Google Scholar 

  • Trudgill PW (1984b) The microbial metabolism of furans. In: DT Gibson (ed) Microbial Degradation of Organic Compounds (pp 295–308). Marcel Dekker, New York.

    Google Scholar 

  • van Afferden M, Schacht S, Klein J and Truper HG (1990) Degradation of dibenzothiophene by Brevibacterium sp. DO. Arch. Microbiol. 153: 324–328.

    Google Scholar 

  • Wakeham SG, Canuel EA and Doering PH (1986) Behavior of aliphatic hydrocarbons in coastal seawater: mesocosm experiments with [14C]octadecane and [14C]decane. Environ. Sci. Technol. 20:574–580.

    PubMed  CAS  Google Scholar 

  • Ward DM and Brock TD (1978) Anaerobic metabolism of hexadecane in sediments. Geomicrobiol. J. 1: 1–9.

    CAS  Google Scholar 

  • Watkinson RJ (1980) Interaction of microorganisms with hydrocarbons. In: DEF Harrison, IJ Higgins and RJ Watkinson (eds) Hydrocarbons in Biotechnology (pp 11–24). Heyden, London

    Google Scholar 

  • Watkinson RJ and Morgan P (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1: 79–92.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morgan, P., Watkinson, R.J. (1994). Biodegradation of components of petroleum. In: Ratledge, C. (eds) Biochemistry of microbial degradation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1687-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1687-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4738-8

  • Online ISBN: 978-94-011-1687-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics