Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 248))

  • 152 Accesses

Abstract

The fractional quantum Hall effect results from a correlated ground state of interacting electrons confined to a layer and subject to a strong transverse magnetic field. It exhibits dissipationaless conduction ρxx = 0 and quantization of the Hall resistance RH = hv/e , with v-the Landau level filling number-a rational fraction. This paper will address the magneto-optics of quantum Hall states. For ideal system of coplanar electrons and holes the photoluminescence (PL) spectrum occurs at the isolated magnetoexciton binding energy, independent of the underlying electron density and therefore does not reflect any of the features associated with the fractional quantum Hall effect. If, however, the electron and hole layers are far enough apart the PL spectrum coincides with the single particle spectral (tunneling) density of states ρ(ω). For quantum Hall states at primary fillings v = 1/m, ρ(ω) exhibits a single characteristic peak. In the presence of quasi-particle excitations the PL spectrum develops an additional peak with intensity proportional to the number of quasi-particles and shifted in energy from the main peak by the quasi-particle quasi-hole gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The history of the initial developments can be found in The Quantum Hall Effect, edited by R.E. Prange and S.M. Girvin (Springer-Verlag, New York, 1986).

    Google Scholar 

  2. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

    Article  ADS  Google Scholar 

  3. D. Heiman, B.B. Goldberg, A. Pinczuk, A.C. Gossard, and J.H. English, Phys. Rev. Lett. 61, 605 (1988); B.B. Goldberg, D. Heiman, A. Pinczuk, L. Pfeiffer, and K. West, Phys. Rev. Lett. 65, 641 (1990); H. Buhman, W. Joss, K. von Klitzing, I.V. Kukshin, G. Martinez, A.S. Plaut, K. Ploog, and V.B. Timofeev, Phys. Rev. Lett. 65, 1056 (1990); A.J. Tuberfield, R.S. Haynes, P.A. Wright, R.A. Ford, R.G. Clark, J.F. Ryan, J.J. Harris, and C.T. Foxon, Phys. Rev. Lett. 65, 637 (1990); H. Buhmann, W. Joss, K. von Klitzing, I.V. Kuksuhkin, A.S. Plaut, G. Martinez, K. Ploog, and V.B. Timofeev, Phys. Rev. Lett. 66, 926 (1991). See also papers in these proceedings.

    Article  ADS  Google Scholar 

  4. E.H. Rezayi and A.H. MacDonald, Bull. Am. Phys. Society, 36, 915 (1991).

    Google Scholar 

  5. A.H. MacDonald, E.H. Rezayi, and David Keller, Phys. Rev. Lett. 68, 1939 (1992).

    Article  ADS  Google Scholar 

  6. F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  7. A.H. MacDonald and E.H. Rezayi, Phys. Rev. B 42, 3224 (1990); see also I.V. Lerner and Yu. E. Lozovik, Zh. Eksp. Teor. Fiz. 80, 1488 (1981) [Sov. Phys. — JETP 53, 763 (1981)]; Y.A. Bychov and E.I. Rashba, Solid State Commun. 48, 399 (1983); T.M. Rice, D. Paquet, and K. Ueda, Helv. Phys. Acta 58, 410 (1985); D. Paquet, T.M. Rice, and K. Ueda, Phys. Rev. B 32, 5208 (1985) and work quoted therein; E.I. Rashba, in these proceedings.

    Article  ADS  Google Scholar 

  8. G. Fano and F. Ortolani Phys Rev. B 37, 8179 (1988).

    Article  ADS  Google Scholar 

  9. F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983); B.I. Halperin, Phys. Rev. Lett. 52, 1583 (1984); R.B. Laughlin, Surf. Sci. 141, 11 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  10. For a recent review of the optical properties of semiconductor quantum wells see S. Schmitt-Rink, D.S. Chemla, and D.A.B. Miller, Advances in Physics 38, 89 (1989).

    Google Scholar 

  11. A.L. Fetter and J.D. Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill, New York, 1971).

    Google Scholar 

  12. E.H. Rezayi, Phys. Rev. B 35, 3032 (1987).

    Article  ADS  Google Scholar 

  13. I.V. Kikushkin and V.B. Timofeev, Pis’ma Zh. Eksp. Teor. Fiz. 44, 179 (1986) [JETP Lett. 44, 228 (1986)].

    Google Scholar 

  14. A.H. MacDonald and S.M. Girvin, Phys. Rev. B 34, 5639 (1986); A.H. MacDonald and S.M. Girvin, Phys. Rev. B 33,4414 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rezayi, E. (1993). Photoluminescence in the Fractional Quantum Hall Effect. In: Lockwood, D.J., Pinczuk, A. (eds) Optical Phenomena in Semiconductor Structures of Reduced Dimensions. NATO ASI Series, vol 248. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1912-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1912-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4845-3

  • Online ISBN: 978-94-011-1912-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics