Skip to main content

From Qualitative to Quantitative Analyses of Circular Dichroism Spectra Using the Convex Constraint Algorithm

  • Chapter
Recent Experimental and Computational Advances in Molecular Spectroscopy

Part of the book series: NATO ASI Series ((ASIC,volume 406))

Abstract

Chirality is a geometric property of certain molecules, which results in that they interact differently with left- and right-circularly polarized light. The optical activity of dissimetric crystals was first observed almost two hundred years ago (Arago, 1811). However, the application of optical rotatory dispersion (ORD) and circular dichroism (CD) to study peptide and protein conformations started only in the last three decades. This was followed by the interesting ORD studies of synthetic polypeptides, performed in the fifties by Doty, Moffit and Yang. The pioneering discoveries of Crick and Kendrew (1957) on helices initiated several hundreds of valuable work on peptide and protein conformations. In 1965, Holzwarth and Doty measured, for the first time, the CD spectrum of an ot-helix. The CD spectrum of Pauling and Corey’s ß-pleated sheet was determined for (Lys)n-type homopolymers, as well as for silk fibroin in solution. Since 1975, more attention has been focused on the CD of ß-turns, ß-bends, 310- bends, hairpins, loops, etc. (Chou, Fasman), as well as on the CD contribution of unordered or non- typical secondary structures. Theoretical attempts to give a general explanation for the origin of the various observed CD bands have also been performed (Moffit, Woody).

By assuming the additivity of the CD contributions originated in the different conformation structures (helices, ß-forms, etc.), a measured CD spectrum [f(λ)] is the weighted sum of the pure conformers’ CD spectra [gi(λ)]:

$$ \begin{gathered} f\left( \lambda \right) = \sum {{p_i}*{g_i}\left( \lambda \right)} + noise \hfill \\ Where\,{p_i}\,is\,the\,weight\,of\,{g_i}\left( \lambda \right) \hfill \\ \end{gathered} $$

The fundamental question for a quantitative structure analysis using CD spectroscopy is the determination of the possible conformers and their associated gi(λ) functions, and different methods of analysis have been developed in the past years to solve this problem. Traditionally, the determination of the Reference Spectra Set (the set of gi((λ) curves) is based on model polypeptides and proteins, using a linear combination of CD spectra. The common weakness of these methods is their reduced flexibility, which makes them suitable only for qualitative or, in the best cases, semi-quantitative structure analysis. In contrast, a recent algorithm (Convex Constraint Deconvolution Algorithm - CCA) gives us, at least in principle, the possibility of reaching a quantitative level of accuracy in structure analysis studies by CD spectroscopy. In contrast to a linear combination based method, this procedure aims to determine simultaneously the weights pj and the pure component curves gi(λ) by minimizing the following expression,

$$ {\left[ {\sum\limits_{{j = 1}}^N {f_j^m\left( \lambda \right) - \sum\limits_{{j = 1}}^N {f_j^c\left( \lambda \right)} } } \right]^2} = {\left[ {\sum\limits_{{j = 1}}^N {f_j^m\left( \lambda \right) - \sum\limits_{{j = 1}}^N {\sum\limits_{{i = 1}}^P {{p_{{ij}}}*{g_i}\left( \lambda \right)} } } } \right]^2} $$

which is possible since a set of measured fm j(λ) CD curves is available.

Assuming that all other CD determining factors (like temperature, solvent shift, concentration, number of chromophors, etc.) are constant, the calculated pure conformational CD curves (the set of gi(λ) functions) and their weights pij are only related to the amide conformation, because this stays the unique variable considered.

The application of this algorithm was successfully performed on a series of proteins and peptides, and the obtained structural parameters were compared with the corresponding geometries determined by X-ray or NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Djerassi, C, “Optical Rotatory Dispersion. Applications to Organic Chemistry”, McGraw-Hill, New York, 1960.

    Google Scholar 

  2. Tinoco, I., Jr. and Cantor, C.R., Methods Biochem. Anal., 18 (1970) 81.

    Article  CAS  Google Scholar 

  3. Jirgenson, B., “Optical Activity of Proteins and Other Macromolecules”, 2nd Ed., Springer- Verlag, Berlin and New York, 1973.

    Book  Google Scholar 

  4. Toome, V. and Weigele, M., In “The Peptides”, E. Gross and J. Meienhofer, Eds., Academic Press, New York, 1981, Vol.4, pp. 85–184.

    Google Scholar 

  5. Woody, R., In “The Peptides”, S. Undenfriend, J. Meienhofer and V.J. Hruby, Eds., Academic Press, New York, 1985, Vol.7, pp. 16–115.

    Google Scholar 

  6. Bendazzoli, G.L., Gottareli, G. and Palmieri, P., J.Am. Chem. Soc., 96 (1974) 11.

    Article  CAS  Google Scholar 

  7. Rauk, A., Jarvie, J.O., Ichimura, H. and Barriel, J.M., J. Am. Chem. Soc., 97 (1975) 5656.

    Article  CAS  Google Scholar 

  8. Poa, Y.-H. and Santry, D.P., J. Am. Chem. Soc., 88 (1966) 4157.

    Article  Google Scholar 

  9. Gould, R.R. and Hoffman, R., J. Am. Chem. Soc., 92 (1970) 1813.

    Article  CAS  Google Scholar 

  10. Bush, CA., J.Am. Chem. Soc., 95 (1973) 214.

    Article  CAS  Google Scholar 

  11. Condon, E.U., Altar, W. and Eyring, H., J. Chem. Phys., 5 (1937) 753.

    Article  CAS  Google Scholar 

  12. Moffit, W., J. Chem. Phys., 25 (1956) 467.

    Article  Google Scholar 

  13. Brahms, S. and Brahms, J., J. Mol. Biol., 138 (1980) 149.

    Article  CAS  Google Scholar 

  14. Brahms, S., Brahms, J., Spach, G. and Brack, A., Proc. Natl. Acad.Sci. USA, 74 (1977), 3208.

    Article  CAS  Google Scholar 

  15. Chou, P.Y. and Fasman, G.D., J. Mol. Biol., 115 (1977) 135.

    Article  CAS  Google Scholar 

  16. Fasman, G.D., Hoving, H. and Timasheff, S.N., Biochemistry, 9 (1970) 3316.

    Article  CAS  Google Scholar 

  17. Gierasch, L.M., Deber, CM., Madison, V., Niu, C.-H. and Blout, E.R., Biochemistry, 20 (1982) 4730.

    Article  Google Scholar 

  18. Greenfield, N. and Fasman, G.D., Biochemistry, 8 (1969) 4108.

    Article  CAS  Google Scholar 

  19. Manavalan, P. and Johnson, W.C., Jr., Proc. Int. Symp. Biomol. Struct. Interactions, Suppl. J. Biosci.,8 (1985) 141.

    CAS  Google Scholar 

  20. Manning, M.C. and Woody, R.W., Biochemistry, 28 (1989) 8609.

    Article  CAS  Google Scholar 

  21. Manning, M.C. and Woody, R.W., Biopolymers, 26 (1987) 1731.

    Article  CAS  Google Scholar 

  22. Zimmerman, S.S., Pottle, M.S., Nemethy, G. and Scheraga, H.A., Macromolecules, 10 (1977) 1.

    Article  CAS  Google Scholar 

  23. Perczel, A., Angzán, J.G., Kajtár, M., Viviani, W., Rivail, J.-L., Marcoccia, J.-F. and Csizmadia, I.G., J. Am. Chem. Soc., 113 (1991) 6256.

    Article  CAS  Google Scholar 

  24. Schellman, J.A. and Oriel, P., J. Chem. Phys., 37 (1962) 2114.

    Article  CAS  Google Scholar 

  25. Woody, R.W. and Tinoco, I„ Jr., J. Chem. Phys., 46 (1976) 4927.

    Article  Google Scholar 

  26. Tinoco, I., Jr., Woody, R.W. and Bradley, D.F., J. Chem. Phys., 38 (1963) 1371.

    Article  Google Scholar 

  27. Woody, R., In “The Peptides”, S. Undenfriend, J. Meienhofer and V.J. Hruby, Eds., Academic Press, New York, 1985, Vol.7, page. 15–114.

    Google Scholar 

  28. Woody, R.W., Biopolymers, 17 (1978) 1451.

    Article  CAS  Google Scholar 

  29. Woody, R.W., J. Polymer Sci. Macromol. Rev., 12 (1977) 181.

    Article  CAS  Google Scholar 

  30. Woody, R.W. and Tinoco, I., Jr., J. Chem. Phys., 46 (1967) 4927.

    Article  CAS  Google Scholar 

  31. Sarkar, P.K. and Doty, P., Proc. Natl. Acad. Sci. USA, 55 (1966) 981.

    Article  CAS  Google Scholar 

  32. Brahms, S., Brahms, J., Spach, G. and Brack, A., Proc. Natl. Acad.Sci. USA, 74 (1977), 3208.

    Article  CAS  Google Scholar 

  33. Venkatachalam, C.M., Biopolymers, 6 (1968) 1425.

    Article  CAS  Google Scholar 

  34. Chou, P.Y. and Fasman, G.D., J. Mol. Biol., 115 (1977) 135.

    Article  CAS  Google Scholar 

  35. Smith, J.A. and Pease, L.G., CRC Crit. Rev. Biochem., 8 (1980) 315.

    Article  CAS  Google Scholar 

  36. Perczel, A., Park, K. and Fasman, G.D., Anal. Biochem., 203 (1992) 83.

    Article  CAS  Google Scholar 

  37. Perczel, A., Tusnady, G., Hollosi, M. and Fasman, G.D., Croatia Chim. Acta., 62 (1989) 189.

    CAS  Google Scholar 

  38. Perczel, A., Tusnady, G., Hollosi, M. and Fasman, G.D., Protein Engineering, 4 (1991) 669.

    Article  CAS  Google Scholar 

  39. Hennessey, J.P., Jr. and Johnson, W.C., Jrr., Biochemistry, 20 (1981) 1085.

    Article  CAS  Google Scholar 

  40. Manavalan, P. and Johnson, W.C, Jr., Anal. Biochem., 167 (1987) 76.

    Article  CAS  Google Scholar 

  41. Pancoska, P. and Keiderling, T.A., Biochemistry, 30 (1991) 6885.

    Article  CAS  Google Scholar 

  42. Provencher, S.W., Computer Phys. Commun., 27 (1982) 213.

    Article  Google Scholar 

  43. Provencher, S.W., Computer Phys. Commun., 27 (1982) 229.

    Article  Google Scholar 

  44. Provencher, S.W. and Glockner, J., Biochemistry, 20 (1981) 33.

    Article  CAS  Google Scholar 

  45. Yang, J.T., Wu, C.-S.C. and Martinez, H.M., In “Methods in Enzymology”, C.H.W. Hirs and S.N. Timasheff Eds., Academic Press, Inc., New York, 1986, Vol. 130, pp 208–269.

    Google Scholar 

  46. Kabsch, W. and Sander, C., Biopolymers, 22 (1983) 2577.

    Article  CAS  Google Scholar 

  47. Perczel, A., Park, K. and Fasman, G.D., Proteins: Structure, Function & Genetics, 13 (1992) 57.

    Article  CAS  Google Scholar 

  48. Park, K., Perczel, A. and Fasman, G.D., Protein Science, 1 (1992) 1032.

    Article  CAS  Google Scholar 

  49. Hollósi, M., Urge, L., Perczel, A., Kajtár, J., Teplán, I., Ötvös, L., Jr. and Fasman, G.D., J. Mol. Biol., 223 (1992) 673.

    Article  Google Scholar 

  50. Perczel, A., Hollósi, M., Foxman, B.M. and Fasman, G.D., J. Am. Chem. Soc., 113 (1991)

    Google Scholar 

  51. 9772.

    Google Scholar 

  52. Perczel, A. and Fasman, G.D., Protein Science, 1 (1992) 378.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Perczel, A. (1993). From Qualitative to Quantitative Analyses of Circular Dichroism Spectra Using the Convex Constraint Algorithm. In: Fausto, R. (eds) Recent Experimental and Computational Advances in Molecular Spectroscopy. NATO ASI Series, vol 406. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1974-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1974-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4871-2

  • Online ISBN: 978-94-011-1974-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics