Skip to main content

Theoretical Problems in Scanning Near-Field Optical Microscopy

  • Chapter
Near Field Optics

Part of the book series: NATO ASI Series ((NSSE,volume 242))

Abstract

The rigorous calculation of Scanning Near-field Optical Microscope (SNOM) images is a difficult task which needs the resolution of a complicated problem of diffraction in unusual conditions: two diffracting objects are present, they contain details smaller than the wavelength and are very close. Various approaches have been proposed to attack this problem and the purpose of this paper is to present, classify and compare these theoretical works.

First we rapidly present the pioneer theoretical papers which give the principle of SNOM or calculate the near-field above various small apertures. After the various models of tip detection are discussed: energy flow or scattering theory.

Then we present the simpler model where the coupling between the sample and the tip is neglected but which give analytical solutions and thus can lead to a real discussion of the role of the various parameters. Finally we describe more rigorous models where the tip-sample coupling is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Descouts, P. and Siegenthaler, H. (1991) ‘10 Years of STM’, Proceedings of the Sixth International Conference on Scanning Tunneling Microscopy Interlaken North Holland.

    Google Scholar 

  2. Pohl D. W., (1990) ‘Scanning near-field optical microscopy’, in C.J.R. Sheppard, and T. Mulvey (eds), Advances in optical and electron microscopy, Academic Press, London, pp. 243–312.

    Google Scholar 

  3. Synge E. A., (1928) ‘A suggested method for extending microscopic resolution into the ultramicroscopic region’, Phil. Mag. C, 356–362.

    Google Scholar 

  4. Mc Cutchen, C. W. (1967) ‘Superresolution in Microscopy and the Abbe resolution limit’, J. Opt. Soc. Amer. 57, 1190–1192.

    Article  ADS  Google Scholar 

  5. Massey, G. A. (1984) ‘microscopy and pattern generation with scanned evanescent waves’, Appl. Opt. 23, 658–660.

    Article  ADS  Google Scholar 

  6. Ch. Fischer, U., Düng, U. and Pohl, D. W. (1987) ‘Near-field optical scanning microscopy and enhanced spectroscopy with submicron aperture’, Scanning Microscopy Supplement 1, 47–52.

    Google Scholar 

  7. Leviatan, Y. (1988) ‘Electromagnetic coupling between two half-space regions separated by two slot-perforated parallel conducting screens’, IEEE trans. Microw. Theory Tech. MTT-36, 44–50.

    Article  ADS  Google Scholar 

  8. Vigoureux, J. M., Girard, C. and Courjon, D. (1989) ‘General principle of scanning tunneling optical microscopy,’ Opt. Lett. 14, 1039–1041.

    Article  ADS  Google Scholar 

  9. Vigoureux, J. M., Depasse, F. and Girard, C. (1992) ‘superresolution of near-field optical microscopy from properties of confined electromagnetic waves’, Appl. Opt. 16, 3036–3045.

    Article  ADS  Google Scholar 

  10. Vigoureux, J. M. and Courjon, D. (1992) ‘Detection of nonradiative fields in light of the Heisenberg uncertainly principle and the Rayleigh criteriom’, Appl. Opt. 31 p 3170–3177

    Article  ADS  Google Scholar 

  11. Bethe, H.A. (1944) ‘Theory of diffraction by small holes’, Phys. Rev. 66, 163–182.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Bouwkamp, C. J. (1954) ‘Diffraction theory’, Reports in Physics, 27, 35–100.

    Article  MathSciNet  ADS  Google Scholar 

  13. English, R. E. and George, N. (1988) ‘Diffraction from a small square aperture: approximate aperture fields’, J. Opt. Soc. Am. A5, 192–199.

    Article  ADS  Google Scholar 

  14. Wirgin, M. (1970) ‘Influence de l’épaisseur de l’écran sur la diffraction par une fente’, C. R. Acad. Sci. Paris 270, 1457–1460.

    Google Scholar 

  15. Neerhoff, F. L. and Mur, G. (1973) ‘Diffraction of a plane electromagnetic wave by a slit in a thick screen placed between two different media’, Appl. Sci. Res. 28, 73–88.

    Google Scholar 

  16. Harrington, R. F. and Auckland, D. T. (1980) ‘Electromagnetic transmission through narrow slots in thick conducting screens’, IEEE Trans. Antennas Propagat. AP 28, 616–622.

    Article  ADS  Google Scholar 

  17. Mata Mendez, O., Cadihac, O. and Petit, R. (1983) ‘Diffraction of a two-dimensional electromagnetic beam wave by a thick slit pierced in a perfectly conducting screen’, J. Opt. Soc. Am. 73, 328–331.

    Article  ADS  Google Scholar 

  18. Betzig, E., Harootunian, A., Lewis, A. and Isaacson, M. (1986) ‘Near-field diffraction by a slit: implications for supperresolution microscopy’, Appl. Opt. 25, 1890–1900.

    Article  ADS  Google Scholar 

  19. Roberts, A. (1987) ‘Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen,’ J. Opt. Soc. Am. A4, 1970–1983.

    Article  ADS  Google Scholar 

  20. Roberts, A. (1992) ‘Small hole coupling of radiation into a near-field probe’, J. Appl. Phys. 70, 4045–4049.

    Article  ADS  Google Scholar 

  21. Born, M., Wolf, E. (1970) ‘Principle of Optics’, Pergamon press, New York.

    Google Scholar 

  22. Van de Hulst, H.C. (1957) ‘Light scattering by small particles’, Wiley, New York.

    Google Scholar 

  23. Kerker, M. (1983) ‘The scattering of light and other electromagnetic radiation’, Academic Press, New York.

    Google Scholar 

  24. Tirosh, E. and Cohen, A. (1989) ‘Near-field scattering by passive and active small spherical particles’, J. Opt. Soc. Am. 6, 523–524.

    Article  ADS  Google Scholar 

  25. Jones, D. S. (1986) ‘Acoustic and Electromagnetic waves’, Garendon Press, Oxford.

    Google Scholar 

  26. Au Kong, J. (1984) ‘Electromagnetic wave Theory’, John Wiley, New York.

    Google Scholar 

  27. Petit, R. (1980), ‘Electromagnetic Theory of gratings’ Vol. 22 of Topics in current Physics, Springer-Verlag, Berlin.

    Book  Google Scholar 

  28. Maystre, D. (1984) ‘Rigorous vector theories of diffraction gratings’, in E. Wolf (ed) Progress in Optics XXI, Elsevier, Amsterdam, pp 1–66.

    Google Scholar 

  29. Soto-Crespo, J. M. and Nieto-Vesperinas, M. (1989) ‘Electromagnetic scattering from very rough random surfaces and deep reflection gratings’, J. Opt. Soc. Am. A 6, 367–384.

    Article  ADS  Google Scholar 

  30. Toigo, F., Marvin, A., Celli, V. and Hill, N. R. (1977) ‘Optical properties of rough surfaces: General theory and the small roughness limit’, Phys. Rev. B13, 5618–5626.

    ADS  Google Scholar 

  31. Agarwal, G. S. (1977) ‘interaction of electromagnetic waves at rough dielectric surfaces’, Phys. Rev. B15, 2371–2383.

    ADS  Google Scholar 

  32. Maradudin, A. and Mills, D. (1975) ‘Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness’, Phys. Rev. B 11, 1392–1415.

    Article  ADS  Google Scholar 

  33. Labani, B., Girard, C., Courjon, D. and Van labeke, D. (1990) ‘Optical interaction between a dielectric tip and a nanometric lattice: implications for near-field microscopy’, J. Opt. Soc. Amer. A 7, 936–943.

    Article  ADS  Google Scholar 

  34. Girard, C. and Courjon, D. (1990) ‘Model for scanning tunneling optical microscopy: A microscopic self-consistent approach’, Phys. Rev. B 42, 9340–9349.

    Article  ADS  Google Scholar 

  35. Girard, C. and Spajer, M. (1990) ‘Model for reflection near-field optical microscopy’, Appl. Opt. 29, 3726–3733.

    Article  ADS  Google Scholar 

  36. Girard, C. and Bouju, X. (1991) ‘Self-consistent study of dynamical and polarization effects in near-field optical microscopy’, J. Opt. Soc. Amer. B 9, 298–305.

    Article  ADS  Google Scholar 

  37. Girard, C. and Bouju, X. (1991) ‘Coupled electromagnetic modes between a corrugated surface and a thin probe tip’, J. Chem. Phys. 95, 2056–2064.

    Article  ADS  Google Scholar 

  38. Girard, C. (1992) ‘Multipolar propagators near a corrugated surface: Implication for local-probe microscopy’, Phys. Rev. B 45, 1800–1810.

    Article  ADS  Google Scholar 

  39. Girard, C. (1993) ‘Near-field detection and local spectroscopy of a surface: a self consistent theoretical study,’ N.F.O. Besançon to be published in this review.

    Google Scholar 

  40. Salomon, L., De fornel, F. and Goudonnet, J.P. (1991) ‘Sample-tip coupling efficiencies of the photon scanning tunneling microscope’, J. Opt. Soc. Amer. 8, 2009–2015.

    Article  ADS  Google Scholar 

  41. Cites, J., Sanghadasa, M. F. M., Sung, C. C., Reddick, R. C., Warmack, R. J. and Ferrell, T. L. (1992) ‘Analysis of photon scanning tunneling microscope images’, J. Appl. Phys. 71, 7–10.

    Article  ADS  Google Scholar 

  42. Van Labeke, D and Barchiesi, D. (1992) ‘Scanning-tunneling optical microscopy: a theoretical macroscopic approach,’ J. Opt. Soc. Am. A 9, 732–739.

    Article  ADS  Google Scholar 

  43. Jackson, J. D. (1975) ‘Classical electrodynamics’, John Wiley, New York.

    MATH  Google Scholar 

  44. Abramowitz, M. and Stegun, I. A. (1964) ‘Hanbook of mathematical functions,’ Dover, New-York.

    Google Scholar 

  45. Barchiesi, D. and Van Labeke, D. (1993) ‘Application of Mie scattering of evanescent waves to scanning optical tunneling microscopy theory’, to be published in Modern Optics.

    Google Scholar 

  46. Van Labeke, D. (1992) ‘Near-field optical microscopy: theoretical concepts and models’, in S. Gauthier and C. Joachim (eds.) ‘Scanning Probe microscopy: beyond the images’ Editions de Physique, les Hulis, France, pp. 228–275.

    Google Scholar 

  47. Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S. and Kostelar, R. L (1991) ‘Breaking the diffraction barrier: optical microscopy on a nanometric scale’, Science 251, 1468–1470.

    Article  ADS  Google Scholar 

  48. Barchiesi, D. and Van Labeke, D. (1993)’ scanning tunneling optical microscopy: theoretical study of polarization effects with two models of tip’, N.F.O. Besançon to be published in this review.

    Google Scholar 

  49. Goudonnet, J. P., Salomon, L., De Fornel, F., Bouillot, E., Adam, P. and Neviere, M. (1992) ‘Recent progress in photon scanning tunneling microscopy’, Conference SPIE, Los Angeles.

    Google Scholar 

  50. Denk, W. and Pohl, D. W. (1991) ‘Near-field optics: Microscopy with nanometer-size fields’, J. Vac. Sci. Technol. B 9, 510–513.

    Article  Google Scholar 

  51. Bernt, R., Gimzewski, J. K. and Schlittler, R.R. (1992) ‘Enhanced photon emission from the STM: a general property of metal surfaces’, Ultramicroscopy 42-44, 355–359.

    Article  Google Scholar 

  52. Dereux, A., Vigneron, J. P., Lambin, Ph. and Lucas, A. A. (1991) ‘Theory of near-field optics with applications to SNOM and optical binding’, Physica B 175, 65–67.

    Article  ADS  Google Scholar 

  53. Dereux, A. (1991) ‘Théorie de l’optique du champ proche,’ thesis Namur, Belgium.

    Google Scholar 

  54. Greffet, J. J. and Ladan, F. R. (1992) ‘Comparison between theoretical and experimental scattering of an s-polarized electromagnetic wave by a two-dimensional obstacle on a surface’, J. Opt. Soc. Am. A 8, 1261–1269.

    Article  ADS  Google Scholar 

  55. Santenac, A. and Greffet, J. J. (1992) ‘Scattering by deep inhomogeneous gratings’, J. Opt. Soc. Am. A 9, 996–1005.

    Article  ADS  Google Scholar 

  56. Efrima, S. and Metiu, H. (1902) ‘Classical theory of light scattering by an adsorbed molecule. I. Theory’ J. Chem. Phys. 70, 1602–1613.

    Article  ADS  Google Scholar 

  57. Fischer, U. Ch. and Pohl, D. W. (1989) ‘Observation of single-particle plasmon by near-field optical microscopy’, Phys. Rev. Lett. 62, 458–461.

    Article  ADS  Google Scholar 

  58. Neviere, M. (1993) ‘Diffraction gratings as components for photon scanning tunneling microscope image interpretation’, N.F.O. Besançon to be published in this review.

    Google Scholar 

  59. Bernstsen, S., Bozhevolnaya, E. and Bozhevolnyi, S. (1993) ‘Macroscopic self consistent model for external reflection near-field microscopy,’ to be published in J. Opt. Soc. Am.

    Google Scholar 

  60. Singham, S. B. and Saltzman, G. C. (1986) ‘Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation,’ J. Chem. Phys. 84, 2658–2667.

    Article  ADS  Google Scholar 

  61. Singham, S. B. and Bohren, C. F. (1992) ‘Light scattering by an arbitrary particle: the scattering-order formulation of the coupled-dipole method,’ J. Opt.Soc. Am. A 5, 1867–1872.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Labeke, D., Barchiesi, D. (1993). Theoretical Problems in Scanning Near-Field Optical Microscopy. In: Pohl, D.W., Courjon, D. (eds) Near Field Optics. NATO ASI Series, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1978-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1978-8_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4873-6

  • Online ISBN: 978-94-011-1978-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics