Skip to main content

Dynamic Mechanical Analysis Using Complex Waveforms

  • Chapter
Techniques in Rheological Measurement

Abstract

Small-amplitude oscillatory shear is a widely used method of determining the linear viscoelastic properties of materials. In the classical version of the technique, the material is subjected to a sinusoidal shear strain of amplitude γ0 and frequency ω, such that the shear strain as a function of time is

$$ \gamma (t) = {\gamma _0}\;\sin \left( {\omega t} \right) $$
(7.1)

If the response is linear, i.e. if the strain amplitude is sufficiently small, the resulting shear stress will also be sinusoidal:

$$ \sigma (t) = {\sigma _0}\;\sin \left( {\omega t + \delta } \right) $$
(7.2)

where δ is the phase angle or mechanical loss angle and σ0 is the stress amplitude. Furthermore, σ0 at a given frequency is proportional to γ0, again if the strain is sufficiently small that the response is linear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. R. Zeicher and P. D. Patel, Proc. 2nd World Congress of Chemical Engineering, Montreal, 1981, 6, 373.

    Google Scholar 

  2. W. H. Tuminello, Poly. Eng. Sci. 1986, 26, 1339.

    Article  CAS  Google Scholar 

  3. G. Marin, J. Peyrelasse and Ph. Monge, Rheol. Acta, 1983, 22, 476.

    Article  CAS  Google Scholar 

  4. J. W. Cooley and J. W. Tukey, Math. Computing, 1965, 19, 297.

    Article  Google Scholar 

  5. R. W. Ramirez, The FFT—Fundamentals and Concepts, Prentice Hall, Engle-wood Cliffs, NJ, 1985.

    Google Scholar 

  6. E. K. Holly, S. K. Venkataraman, F. Chambon and H. H. Winter, J. Non-Newtonian Fluid Mech., 1988, 27(1), 17.

    Article  CAS  Google Scholar 

  7. A. Ya. Malkin, V. P. Beghishev and V. A. Mansurov, Vysokomol. Soedin (J. Polymer Science USSR), 1984, 26A(4), 869.

    Google Scholar 

  8. J. P. Bertig, J. J. O’Connor and M. Grehlinger, Use of arbitrary waveforms to determine the rheological properties of viscoelastic systems. Paper presented at Society of Rheology 61st Annual Meeting, 1989.

    Google Scholar 

  9. W. D. T. Davies, System Identification for Self-Adaptive Control, Wiley Inter-Science, New York, 1970.

    Google Scholar 

  10. M. S. Vratsanos and R. J. Farris, J. Appl. Polym. Sci., 1988, 36, 403.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nelson, B.I., Dealy, J.M. (1993). Dynamic Mechanical Analysis Using Complex Waveforms. In: Collyer, A.A. (eds) Techniques in Rheological Measurement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2114-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2114-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4937-5

  • Online ISBN: 978-94-011-2114-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics