Skip to main content

Part of the book series: Solid Mechanics And Its Applications ((SMIA,volume 11))

Abstract

Most problems in structural optimization must be formulated as constrained minimization problems. In a typical structural design problem the objective function is a fairly simple function of the design variables (e.g., weight), but the design has to satisfy a host of stress, displacement, buckling, and frequency constraints. These constraints are usually complex functions of the design variables available only from an analysis of a finite element model of the structure. This chapter offers a review of methods that are commonly used to solve such constrained problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kreisselmeier, G., and Steinhauser, R., “Systematic Control Design by Optimizing a Vector Performance Index,” Proceedings of IFAC Symposium on Computer Aided Design of Control Systems, Zurich, Switzerland, pp. 113–117, 1979.

    Google Scholar 

  2. Sobieszczanski-Sobieski, J., “A Technique for Locating Function Roots and for Satisfying Equality Constraints in Optimization,” NASA TM-104037, NASA LaRC, 1991.

    Google Scholar 

  3. Wolfe, P.. “The Simplex Method for Quadratic Programming,” Econometrica, 27(3), pp. 382–398, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  4. Gill, P.E., Murray, W., and Wright, M.H., Practical Optimization, Academic Press, 1981.

    Google Scholar 

  5. Dahlquist, G., and Bjorck, A., Numerical Methods, Prentice Hall, 1974.

    Google Scholar 

  6. Sobieszczanski-Sobieski, J., Barthelemy, J.F., and Riley, K.M., “Sensitivity of Optimum Solutions of Problem Parameters”, AIAA Journal, 20(9), pp. 1291–1299, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  7. Rosen, J.B., “The Gradient Projection Method for Nonlinear Programming— Part I: Linear Constraints”, The Society for Industrial and Appl. Mech. Journal, 8(1), pp. 181–217, 1960.

    Article  MATH  Google Scholar 

  8. Abadie, J., and Carpentier, J., “Generalization of the Wolfe Reduced Gradient Method for Nonlinear Constraints”, in: Optimization (R. Fletcher, ed.), pp. 37–49, Academic Press, 1969.

    Google Scholar 

  9. Rosen, J.B., “The Gradient Projection Method for Nonlinear Programming—Part II: Nonlinear Constraints”, The Society for Industrial and Appl. Mech. Journal, 9(4), pp. 514–532, 1961.

    Article  Google Scholar 

  10. Haug, E.J., and Arora, J.S., Applied Optimal Design: Mechanical and Structural Systems, John Wiley, New York, 1979.

    Google Scholar 

  11. Zoutendijk, G., Methods of Feasible Directions, Elsevier, Amsterdam, 1960.

    MATH  Google Scholar 

  12. Vanderplaats, G.N., “CONMIN—A Fortran Program for Constrained Function Minimization”, NASA TM X-62282, 1973.

    Google Scholar 

  13. Fiacco, V., and McCormick, G.P., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley, New York, 1968.

    MATH  Google Scholar 

  14. Haftka, R.T., and Starnes, J.H., Jr., “Applications of a Quadratic Extended Interior Penalty Function for Structural Optimization”, AIAA Journal, 14(6), pp.718–724, 1976.

    Article  MATH  Google Scholar 

  15. Dahlguist, J., “Penalty Function Methods in Optimum Structural Design—Theory and Applications”, in: Optimum Structural Design (Gallagher and Zienkiewicz, eds.), pp. 143–177, John Wiley, 1973.

    Google Scholar 

  16. Shin, D.K, Gürdal, Z., and Griffin, O. H. Jr., “A Penalty Approach for Nonlinear Optimization with Discrete Design Variables,” Engineering Optimization, 16, pp. 29–42, 1990.

    Article  Google Scholar 

  17. Bertsekas, D.P., “Multiplier Methods: A Survey,” Automatica, 12, pp. 133–145, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hestenes, M.R., “Multiplier and Gradient Methods,” Journal of Optimization Theory and Applications, 4(5), pp. 303–320, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  19. Fletcher, R., “An Ideal Penalty Function for Constrained Optimization,” Journal of the Institute of Mathematics and its Applications, 15, pp. 319–342, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  20. Powell, M.J.D., “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations”, Proceedings of the 1977 Dundee Conference on Numerical Analysis, Lecture Notes in Mathematics, Vol. 630, pp. 144–157, Springer-Verlag, Berlin, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haftka, R.T., Gürdal, Z. (1992). Constrained Optimization. In: Elements of Structural Optimization. Solid Mechanics And Its Applications, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2550-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2550-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-1505-6

  • Online ISBN: 978-94-011-2550-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics