Skip to main content

Numerical Integration in High Dimensions — the Lattice Rule Approach

  • Chapter
Numerical Integration

Part of the book series: NATO ASI Series ((ASIC,volume 357))

Abstract

Of the few methods available for numerical integration in high dimensions, one of the most interesting is the number theoretic method of good lattice points originated by Korobov and Hlawka. This paper introduces the subject of lattice rules, which may be thought of as a generalisation of the method of good lattice points, and reviews recent developments. After introducing the concept of the rank of a lattice rule (the method of good lattice points has rank 1, the product-rectangle rule in s dimensions has rank s, and rules with every rank between 1 and s also exist) the paper will discuss some theoretical and practical grounds for believing that certain rules with rank greater than 1 might be of practical value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Conroy, H. (1967) ‘Molecular Schrödinger equation VIII: A new method for the evaluation of multidimensional integrals’, J. Chem. Phys. 47, 5307–5318.

    Article  Google Scholar 

  • Davis, P. and Rabinowitz, P. (1975) ‘Methods of Numerical Integration’, Academic Press, New York.

    MATH  Google Scholar 

  • Disney, S.A.R. (1990), ‘Error bounds for the rank 1 lattice rules modulo composites’, Monatsh. Math., 110, 89–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Disney, S.A.R. and Sloan, I.H. (1991a) ‘Error bounds for the method of good lattice points’, Math. Comp. 56, 257–266.

    Article  MathSciNet  MATH  Google Scholar 

  • Disney, S.A.R. and Sloan, I.H. (1991b) ‘Lattice integration rules of maximal rank’, SIAM J. Numer. Anal., to appear.

    Google Scholar 

  • Frolov, K.K. (1977) ‘On the connection between quadrature formulas and sublattices of integral vectors’, (Russian), Dokl. Akad. Nauk SSSR, 232, 40–43.

    MathSciNet  Google Scholar 

  • Hlawka, E. (1962) ‘Zur angenäherten Berechnung mehrfacher Integrale’, Monatsh. Math., 66, 140–151.

    Article  MathSciNet  MATH  Google Scholar 

  • Hua Loo Keng and Wang Yuan (1981) ‘Applications of Number Theory to Numerical Analysis’, Springer-Verlag, Berlin, Science Press, Beijing.

    MATH  Google Scholar 

  • Joe, S. and Disney, S.A.R. (1991) ‘Intermediate rank lattice rules for multiple integration’, submitted.

    Google Scholar 

  • Joe, S. and Sloan, I.H. (1992) ‘Imbedded lattice rules for multidimensional integration’, SIAM J. Numer. Anal., to appear.

    Google Scholar 

  • Korobov, N.M. (1960) ‘Properties and calculation of optimal coefficients’, Dokl. Akad. Nauk SSSR, 132, 1009–1012 (Russian), Soviet Math. Dokl., 1, 696-700 (English transl.).

    MathSciNet  Google Scholar 

  • Lyness, J.N. (1989) ‘An introduction to lattice rules and their generator matrices’, IMA J. Numer. Anal., 9, 405–419.

    Article  MathSciNet  MATH  Google Scholar 

  • Lyness, J.N. and Sørevik, T. (1989) ‘The number of lattice rules’, BIT, 29, 527–534.

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H. (1978) ‘Quasi-Monte Carlo methods and pseudo-random numbers’, Bull. Amer. Math. Soc., 84, 957–1041.

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H. (1991) ‘Random Number Generation and Quasi-Monte Carlo Methods’, SIAM, Philadelphia, to appear.

    Google Scholar 

  • Niederreiter, H. (1992a) ‘The existence of efficient lattice rules for multidimensional numerical integration’, Math. Comp., to appear.

    Google Scholar 

  • Niederreiter, H. (1992b) ‘Improved error bounds for lattice rules’, submitted.

    Google Scholar 

  • Price, J. and Sloan, I.H. (1991) ‘Pointwise convergence of multiple Fourier series and an application to numerical integration’, J. Math. Anal. and Applics., to appear.

    Google Scholar 

  • Sloan, I.H. (1984) ‘Lattice methods for multiple integration’, J. Comput. Appl. Math. 12 & 13, 131–143.

    MathSciNet  Google Scholar 

  • Sloan, I.H. and Kachoyan, P.J. (1987) ‘Lattice methods for multiple integration: theory, error analysis and examples’, SIAM J. Numer. Anal., 24, 116–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Sloan. I.H. and Lyness, J.N. (1989) ‘The representation of lattice quadrature rules as multiple sums’, Math. Comp., 52, 81–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Sloan, I.H. and Lyness, J.N. (1990) ‘Lattice rules: projection regularity and unique representations’, Math. Comp., 54, 649–660.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sloan, I.H. (1992). Numerical Integration in High Dimensions — the Lattice Rule Approach. In: Espelid, T.O., Genz, A. (eds) Numerical Integration. NATO ASI Series, vol 357. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2646-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2646-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5169-9

  • Online ISBN: 978-94-011-2646-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics