Skip to main content

Temporal changes in biomass specific photosynthesis during the summer: regulation by environmental factors and the importance of phytoplankton succession

  • Conference paper
The Dynamics and Use of Lacustrine Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 79))

Abstract

Measurements of phytoplankton photosynthesis vs. irradiance relationships have been made at 3–7 day intervals in Lake Erken (central Sweden) for three years during summer stratification. Both the rate of light-limited (αB) and light-saturated (PB max) photosynthesis per unit chlorophyll a showed distinct and similar temporal trends in each year. Seasonal trends were especially evident for PB max, which increased in value for several weeks following the onset of thermal stratification, and then declined in the presence of the large colonial blue-green alga, Gloeotrichia echinulata. By late summer, when the biomass of G. echinulata had decreased, PB max again rose to its early summer value. The covariation of biomass-specific photosynthesis with the blooming of G. echinulata was the one clear seasonal (week-month) pattern which emerged in each of 3 years. Over short (day-week) time scales, changes in αB were related to changes in irradiance exposure on the day of sampling. However, the relationship between these two parameters was variable in time, since it was superimposed upon longer term trends controlled by changes in phytoplankton species composition. Increases in G. echinulata biomass corresponded with a deepening of the thermocline, which both increased internal phosphorus loading and the transport of resting G. echinulata colonies into the epilimnion. The timing and magnitude of the yearly G. echinulata bloom was as a result related to the seasonal development of thermal stratification. These results illustrate the importance of seasonal changes in the phytoplankton community as a factor regulating rates of biomass specific photosynthesis, particularly when the successional changes involve species with very different life strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlgren, I. & G. Ahlgren, 1976. Analytical methods for water chemistry (in Swedish) Institute of Limnology, Uppsala University.

    Google Scholar 

  • APHA, American Public Health Association, 1975. Standard Methods For the Examination of Water and Wastewater. 14th edn. APHA Washington, D.C.

    Google Scholar 

  • Bannister, T. T., 1974. Production equations in terms of chlorophyll concentration quantum yield and upper limit to production. Limnol. Oceanogr. 19: 1–12.

    Article  Google Scholar 

  • Banse, K., 1977. Determining the carbon to chlorophyll ratio of natural phytoplankton. Mar. Biol. 41: 199–212.

    Article  CAS  Google Scholar 

  • Beardall, J. & I. Morris, 1976. The concept of light intensity adaptation in marine phytoplankton. Some experiments with Phaeodactylum tricornutum. Mar. Biol. 37: 377–387.

    Article  Google Scholar 

  • Bell, R. T., U. Stensdotter, V. Istvánovics, D. C. Pierson & K. Pettersson. Microbial dynamics and nutrient turnover in Lake Erken. Limnol. Oceanogr. (in press).

    Google Scholar 

  • Boström, B., 1981. Factors Controlling the Seasonal Variation of Nitrate in Lake Erken. Int. Revue ges. Hydriolbiol. 66: 821–836.

    Article  Google Scholar 

  • Cote, B. & T. Platt, 1983. Day-to-day variations in springsummer photo synthetic parameters of coastal marine phytoplankton. Limnol. Oceanogr. 28: 320–344.

    Article  CAS  Google Scholar 

  • Cullen, J. J. & M. R. Lewis, 1988. The kinetics of algal photoadaptation in the context of vertical mixing. J. Plankton Res. 10: 1039–1063.

    Article  Google Scholar 

  • Droop, M. R., 1973. Some thoughts on nutrient limitation in algae. J. Phycol. 9: 264–272.

    CAS  Google Scholar 

  • Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063–1085.

    Google Scholar 

  • Falkowski, P. G., 1980. Light and shade adaption in marine phytoplankton. In P. G. Falkowski (ed.), Primary Productivity of the Sea. Plenum Press, New York: 99–119.

    Chapter  Google Scholar 

  • Fee, E. J., R. E. Hecky & H. A. Welch, 1987. Phytoplankton photosynthesis parameters in central Canadian lakes. J. Plankton Res. 9: 305–316.

    Article  Google Scholar 

  • Harris, G. P., 1978. Photosynthesis, productivity and growth: The physiological ecology of phytoplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. 10: 1–171.

    Google Scholar 

  • Harris, G. P., G. D. Haffner & B. B. Piccinin, 1980. Physical variability and phytoplankton communities. II. Primary production by phytoplankton in a physically variable environment. Arch. Hydrobiol. 88: 393–425.

    Google Scholar 

  • Healey, F. P. & L. L. Hendzel, 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Can. J. Fish, aquat. Sci. 37: 442–453.

    Article  CAS  Google Scholar 

  • Heyman, U., 1983. Relationships between production and biomass of phytoplankton in four Swedish lakes of different tropic status and humic content. Hydrobiologia 101: 89–104.

    Article  Google Scholar 

  • Heyman, U., 1986. The response of photosynthetic parameters to environmental factors in Siggeforasjön, Sweden. Arch. Hydrobiol. 106: 155–175.

    Google Scholar 

  • Humphries, S. E. & V. D. Lyne, 1988. Cyanophyte blooms: The role of cell buoyancy. Limnol. Oceanogr. 33: 79–91.

    Article  Google Scholar 

  • Håkanson, L., 1981. Determination of characteristic values for physical and chemical lake sediment parameters. Wat. Resour. Res. 17: 1625–1640.

    Article  Google Scholar 

  • Håkanson, L., 1982. Lake bottom dynamics and morphom-etry: The dynamic ratio. Wat. Resour. Res. 18: 144–1450.

    Article  Google Scholar 

  • Istvánovics, V., K. Pettersson & D. Pierson, 1990. Partitioning of phosphate uptake between different size groups of planktonic microorganisms in Lake Erken. Verh. int. Ver. Limnol. 24: 231–235.

    Google Scholar 

  • Istvánovics, V., K. Pettersson, D.C. Pierson & R. Bell, 1992. Phosphorus deficiency as an indicator of algal phosphorus status in Lake Erken during the summer. Limnol Oceanogr. (in press).

    Google Scholar 

  • Jassby, A. D. & T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547.

    Article  CAS  Google Scholar 

  • Jones, R. I., 1977. Factors Controlling phytoplankton production and succession in a highly eutrophic lake (Kinnego Bay, Lough Neagh). II. Phytoplankton production and its chief determinates. J. Ecol. 65: 561–577.

    Article  CAS  Google Scholar 

  • Kiefer, D. A., 1973. Chlorophyll a fluorescence in marine centric diatoms: Responses of chloroplasts to light and nutrient stress. Mar. Biol. 23: 39–46.

    Article  Google Scholar 

  • Kiefer, D. A. & B. C. Mitchell, 1983. A simple steady state description of phytoplankton growth based on absorbtion cross spectra and quanta efficiency. Limnol. Oceanogr. 28: 770–776.

    Article  Google Scholar 

  • Kirk, J. T. O., 1975. A theoretical analysis of the contribution of algal cells to the attenuation of light in natural waters II. Sperical cells. New Phytol. 75: 21–36.

    Article  Google Scholar 

  • Kirk, J. T. O., 1976. A theoretical analysis of the contribution of algal cells to the attenuation of light in natural waters III. Cylindrical and spheroidal cells. New Phytol. 77: 341–358.

    Article  Google Scholar 

  • Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, New York. 401 pp.

    Google Scholar 

  • Lewis, M. R. & C. R. Smith, 1983. A small volume, short incubation-time method for the measurement of photosynthesis as a function of incident irradiance. Mar. Ecol. Prog. Ser. 13: 211–221.

    Article  Google Scholar 

  • Menzel, D. W. & N. Corwin, 1965. The measurement of total phosphorus based on the liberation of organically bound fractions by persulphate oxidation. Limnol. Oceanogr. 10: 280–282.

    Article  Google Scholar 

  • Morel, A., 1978. Available, usable, and stored radiant energy in relation to marine photosynthesis. Deep-Sea Res. 25: 673–688.

    Article  CAS  Google Scholar 

  • Morel, A. & A. Bricaud, 1981. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res. 28A: 1375–1393.

    Google Scholar 

  • Paerl, H. W., 1983. Pardoning of carbon dioxide fixation in the colonial cyanobacterium Microcystis aeruginosa: Mechanism promoting formation of surface scums. Appl. envir. Microbiol. 1: 252–259.

    Google Scholar 

  • Paerl, H. W., 1988. Nuisance phytoplankton blooms in costal, estuarine, and inland waters. Limnol. Oceanogr. 33: 823–847.

    Article  CAS  Google Scholar 

  • Pettersson, K., 1980. Alkaline phosphatase activity and algal surplus phosphorus as phosphorus-deficiency indicators in Lake Erken. Arch. Hydrobiol. 89: 54–87.

    CAS  Google Scholar 

  • Pettersson, K., V. Istvanovics & D. Pierson, 1990. Effects of vertical mixing on phytoplankton phosphorus supply during summer in Lake Erken. Verh. int. Ver. Limnol.: 24: 236–241.

    Google Scholar 

  • Pettersson, K., R. Bell, V. Istvánovics, J. Padisak & D.C. Pierson. Phosphorus status of nano-, ultra-, and bacteri-oplankton in Lake Erken (in prep.).

    Google Scholar 

  • Pierson, D. C, 1989. The importance of phytoplankton photoadaptation in influencing estimates of integral photosynthesis. Nordic Hydrol. 20: 53–72.

    Google Scholar 

  • Platt, T. & A. D. Jasby, 1976. The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J. Phycol. 12: 421–430.

    Google Scholar 

  • Richardson, K., J. Beardall & J. A. Raven, 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies, new Phytol. 93: 157–191.

    Article  Google Scholar 

  • Roelofs, T. D. & R. T. Oglesby, 1970. Ecological observations on the planktonic cyanophyte Gloeotrichia echinulata. Limnol. Oceanogr. 15: 224–229.

    Article  Google Scholar 

  • Sakshaug, E., K. Andresen & D. A. Kiefer, 1989. A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum. Limnol. Oceanogr. 34: 198–205.

    Article  Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Senft, W. H., 1978. Dependence of light-saturated rates of algal photosynthesis on intracellular concentrations of phosphorus. Limnol. Oceanogr. 23: 709–718.

    Article  CAS  Google Scholar 

  • Smith, V. H., 1983a. Light and nutrient dependence of photosynthesis by algae. J. Phycol. 19: 306–313.

    Article  CAS  Google Scholar 

  • Smith, V. H., 1983b. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669–671.

    Article  PubMed  CAS  Google Scholar 

  • Smith, V. H., 1986. Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton. Can. J. Fish, aquat. Sci. 43: 148–153.

    Article  Google Scholar 

  • Steemann-Nielsen, E., V. K. Hansen & E. G. Jorgensen, 1962. The adaptation to different light intensities in Chlorella vulgaris and the time dependence on the transfer to a new light intensity. Physiol. Plant. 15: 505–517.

    Article  Google Scholar 

  • Strickland, J. D. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis. Bull. 167 Fisheries Res. Bd Ottawa, Canada. 310 pp.

    Google Scholar 

  • Taguchi, S., 1976. Relationship between photosynthesis and cell size of marine diatoms. J. Phycol. 12: 185–189.

    Google Scholar 

  • Tailing, J. F., 1957. The photo synthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol. 56: 29–50.

    Article  Google Scholar 

  • Tilzer, M. M., 1983. The importance of fractional light absorbtion by photosynthetic pigments for phytoplankton photosynthesis in Lake Constance. Limnol. Oceanogr. 28: 833–846.

    Article  CAS  Google Scholar 

  • Tilzer, M. M. & B. Breese, 1988. The seasonal productivity cycle of phytoplankton and controlling factors in Lake Constance. Schweiz. Z. Hydrol. 50: 1–39.

    Article  CAS  Google Scholar 

  • Ulén, B., 1971. Chemical composition of freshwater phytoplankton. (In Swedish). Scripta Limnologica Uppsaliensia. 270. 12 pp.

    Google Scholar 

  • Welch, E. B. & R. P. Barbiero, 1990. Sediment to water transport of phosphorus via blue-green algae (abstract only). In The Interactions between sediments and water. Proceedings of the 5th Symposium. International Association for Sediment Water Science.

    Google Scholar 

  • Yamazaki, H. & D. Kamykowski, 1991. The vertical trajectories of motile phytoplankton in a wind mixed water column. Deep Sea Res: 38: 219–241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Veijo Ilmavirta Roger I. Jones

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Pierson, D.C., Pettersson, K., Istvanovics, V. (1992). Temporal changes in biomass specific photosynthesis during the summer: regulation by environmental factors and the importance of phytoplankton succession. In: Ilmavirta, V., Jones, R.I. (eds) The Dynamics and Use of Lacustrine Ecosystems. Developments in Hydrobiology, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2745-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2745-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5218-4

  • Online ISBN: 978-94-011-2745-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics