Skip to main content

Lessons from the size efficiency hypothesis II. The mire of complexity

  • Conference paper
Sediment/Water Interactions

Part of the book series: Developments in Hydrobiology ((DIHY,volume 75))

  • 256 Accesses

Abstract

Over the years, models and concepts developed to explain the behaviour of lake plankton have been generalized and extended to most parts of the limnetic community. This development has now fused with parallel research programs into stream and marine benthos and fish, to yield an imposing literature dealing with complex interactions in aquatic communities. Although the size of this literature has grown, its basic elements, i.e. the allometries of organismal capacity and environmental opportunity, remain those associated with the seminal size efficiency hypothesis. Unfortunately, the difficulties that eventually buried that hypothesis in a welter of detail and special cases were not resolved, so the newer, broader concepts associated with complex interactions remain difficult or impossible to test. Those concepts are so subjective, poorly defined, and variably interpreted that they are more effective in explaining our observations after the fact than in predicting them before-hand. Despite predictive failure, such explanatory models have achieved wide acceptance. Once accepted as substitutes for predictive theory, they mire the advance of science by hiding its deficiencies. One solution to this cloying complexity is insistence that the theories of ecology specify simple, observable response variables so that theories may be evaluated by their predictive power. Components of a ‘general refuge concept’ illustrate the point. This policy has implications for environmental science well beyond the confines of plankton ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens, J. & R. H. Peters, 1991a. Plankton community respiration: relationships with size distribution and lake trophy. Hydrobiologia: 224: 77–87.

    Article  Google Scholar 

  • Ahrens, M. & R. H. Peters, 1991b. The size distribution of the limnoplankton. Can. J. Fish. aquat. Sci. 48: 1967–1978.

    Article  Google Scholar 

  • Agusti, S., C. M. Duarte & J. Kalff, 1987. Algal cell size and maximum density and biomass of phytoplankton. Limnol. Oceanogr. 32: 983–986.

    Article  Google Scholar 

  • Banse, K., 1976. Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size - a review. J. Phycol. 12: 135–140.

    Google Scholar 

  • Banse, K., 1979. On weight dependence of net growth efficiency and specific respiration rates among field populations of invertebrates. Oecologia 38: 111–126.

    Article  Google Scholar 

  • Banse, K., 1982a. Mass scaled rates of respiration and intrinsic growth in very small invertebrates. Mar. Ecol. Prog. Ser. 9: 281–297.

    Article  Google Scholar 

  • Banse, K., 1982b. Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol. Oceanogr. 27: 1059–1071.

    Google Scholar 

  • Banse, K. & S. Mosher, 1980. Adult body mass and annual production/biomass relationships of field populations. Ecol. Monogr. 50: 355–379.

    Article  Google Scholar 

  • Bell, G., 1985. The origin and early evolution of germ cells as illustrated by the Volvocales. In H. O. Halvorson & A. Monroy (eds), The Origin and Evolution of Sex. A. R. Liss Inc. Publ. N.Y.: 221–256.

    Google Scholar 

  • Benndorf, J., 1987. Food web manipulation without nutrient control: A useful strategy in lake restoration? Schweiz. Z. Hydrobiol. 49: 237–248.

    Article  CAS  Google Scholar 

  • Benndorf, J., 1988. Objectives and unsolved problems in ecotechnology and biomanipulation: A preface. Limnologica 19: 5–8.

    Google Scholar 

  • Benndorf, J., M. Schultz, A. Benndorf, R. Unger, E. Penz, H. Kneschke, K. Kossatz, R. Dumke, U. Hornig, R. Kruspe & S. Reichel, 1988. Food web manipulation by enhancement of piscivorous fish stocks: long-term effects in the hypertrophic Bautzen reservoir. Limnologica 19: 97–110.

    CAS  Google Scholar 

  • Bergquist, A. M., S. R. Carpenter & J. C. Latino, 1985. Shifts in phytoplankton size structure and community composition during grazing by contrasting Zooplankton assemblages. Limnol. Oceanogr. 30: 1035–1047.

    Article  Google Scholar 

  • Bird, D. F. & J. Kalff, 1984. The empirical relationships between bacterial abundance and chlorophyll concentration in aquatic streams. Can. J. Fish. aquat. Sci. 41: 1015–1023.

    Article  Google Scholar 

  • Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284.

    Article  CAS  Google Scholar 

  • Birkeland, C. (ed.) 1987. Geographic comparisons of coral reef community processes. Proc. 6th Internat. Coral Reef Sympos. Paris: Unesco.

    Google Scholar 

  • Blueweiss, L., H. Fox, V. Kudzma, D. Nakashima, R. Peters & S. Sams, 1978. Relationships between body size and some life history parameters. Oecologia 37: 257–272.

    Article  Google Scholar 

  • Bonar, A., 1977. Relations between exploitation, yield and community structure in Polish pike-perch (Stizostedion lucioperca) lakes, 1966–1971. J. Fish. Res. Bd Can. 34: 1576–1580.

    Article  Google Scholar 

  • Bothwell, M. L., 1989. Phosphorus limited growth dynamics of lotic periphytic diatom communities: areal biomass and cellular growth rate responses. Can. J. Fish. aquat. Sci. 46: 1293–1301.

    Article  Google Scholar 

  • Bowker, D. W., M. T. Wareham & M. A. Learner, 1983. The selection and ingestion of epilithic algae by Nais elinquis (Oligochaeta: Naididae). Hydrobiologia 98: 171–178.

    Article  Google Scholar 

  • Bronmark, C., 1989. Interactions between epiphytes, macrophytes and freshwater snails: A review. J. Moll. Stud. 55: 299–311.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Brawley, S. H. & W. H. Adey, 1981. The effect of micrograzers on algal community structure in a coral reef microcosm. Mar. Biol. 61: 167–177.

    Article  Google Scholar 

  • Calder, W. A., 1984. Size, Function, and Life History. Harvard University Press, Cambridge, Mass., 421 pp.

    Google Scholar 

  • Calow, P., 1973. The food of Ancylus fluviatilis (Müll.), a littoral stone-dwelling herbivore. Oecologia 13: 113–133.

    Article  Google Scholar 

  • Cammen, L. M., 1980. Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia 44: 303–310.

    Article  Google Scholar 

  • Carpenter, S. R., (ed.), 1988. Complex Interactions in Lake Communities. Springer-Verlag, New York. 283 pp.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bio-Science 35: 634–639.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He & C. N. van Ende, 1987. Regulation of lake primary productivity by food-web structure. Ecology 68: 1863–1876.

    Article  Google Scholar 

  • Carpenter, S. R., T. M. Frost, J. F. Kitchell, T. K. Kratz, D. W. Schindler, J. Shearer, W. G. Sprules, M. J. Vanni & A. P. Zimmerman, 1991. Patterns of primary production and herbivory in 25 North American lake ecosystems, p. 67–96. In J. Cole, S. Findlay & G. Lovett (eds), Comparative Analyses of ecosystems: Patterns, Mechanisms, and Theories. Springer-Verlag, N.Y., 238 pp.

    Google Scholar 

  • Cattaneo, A., 1987. Periphyton in lakes of different trophy. Can. J. Fish. aquat. Sci. 44: 296–303.

    Article  Google Scholar 

  • Cattaneo, A., 1990. The effect of fetch on periphyton spatial variation. Hydrobiologia 206: 1–10.

    Article  Google Scholar 

  • Cattaneo, A. & J. Kalff, 1986. The effect of grazer size manipulation on periphyton communities. Oecologia 69: 612–617.

    Article  Google Scholar 

  • Childress, J. J., 1971. Respiratory rate and depth of occurrence of midwater animals. Limnol. Oceanogr. 16: 104–106.

    Article  Google Scholar 

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and salt water ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.

    Article  Google Scholar 

  • Connell, J. H., 1974. Ecology: Field experiments in marine ecology. In R. Mariscal (ed.), Experimental Marine Biology. Academic Press, N.Y.: 21–54.

    Google Scholar 

  • Cryer, M., G. Peirson & C. R. Townsend, 1986. Reciprocal interactions between roach, Rutilus rutilus, and Zooplankton in a small lake: prey dynamics and fish growth and recruitment. Limnol. Oceanogr. 31: 1022–1038.

    Article  Google Scholar 

  • Cuker, B. E., 1983. Competition and coexistence among the grazing snail, Lymnaea, Chironomidae, and microcrustacea in an arctic epilithic lacustrine community. Ecology 64: 10–15.

    Article  Google Scholar 

  • Currie, D. J. & J. Kalff, 1984. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29: 298–310.

    Article  CAS  Google Scholar 

  • de Bernardi, R. & R. H. Peters, 1987. Why Daphnial Mem. Ist. ital. Idrobiol. 45: 1–9.

    Google Scholar 

  • de Melo, R., R. France & D. J. McQueen, 1991. Biomanipulation - Hit or myth? Limnol. Oceanogr. 36: (in press).

    Google Scholar 

  • Devol, A. H., 1979. Zooplankton respiration and its relation to plankton dynamics in two lakes of contrasting trophic state. Limnol. Oceanogr. 24: 893–905.

    Article  CAS  Google Scholar 

  • Dial, K. & J. M. Marzluff, 1988. Are the smallest organisms the most diverse? Ecology 69: 1620–1624.

    Article  Google Scholar 

  • Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationships in lakes. Limnol. Oceanogr. 19: 767–73.

    Article  CAS  Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Article  Google Scholar 

  • Dodson, S. I. & J. E. Havel, 1988. Indirect prey effects: Some morphological and life history responses of Daphnia pulex exposed to Notonecta undulata. Limnol. Oceanogr. 33: 1274–1285.

    Article  Google Scholar 

  • Drenner, R. W., S. T. Threlkeld & M. D. McCracken, 1986. Experimental analysis of the direct and indirect effects of an omnivorous filter-feeding clupeid on plankton community structure. Can. J. Fish. aquat. Sci. 43: 1935–1945.

    Article  Google Scholar 

  • Duarte, C. M., S. Agusti & R. H. Peters, 1987. An upper limit to the abundance of aquatic organisms. Oecologia 74: 272–276.

    Article  Google Scholar 

  • Duarte, C. M. & M. Alcaraz, 1989. To produce many small or few large eggs: a size-independent reproductive tactic of fish. Oecologia 80: 401–404.

    Article  Google Scholar 

  • Dudley, T. L., S. D. Cooper & N. Hemphill, 1986. Effects of macroalgae on a stream invertebrate community. J. N. Am. Benthol. Soc. 5: 93–106.

    Article  Google Scholar 

  • Duggins, D., 1980. Kelp beds and sea otters: an experimental approach. Ecology 61: 447–453.

    Article  Google Scholar 

  • Elser, J. J. & N. A. MacKay, 1989. Experimental evaluation of effects of Zooplankton biomass and size distribution on algal biomass and productivity in three nutrient-limited lakes. Arch. Hydrobiol. 114: 481–496.

    Google Scholar 

  • Estes, J. A., N. S. Smith & J. F. Palmisano, 1978. Sea otter predation and community organization in the western Aleutian Islands, Alaska. Ecology 59: 822–833.

    Google Scholar 

  • Fenchel, T. & B. J. Finlay, 1983. Respiration rates in heterotrophic, free-living Protozoa. Microbiol. Ecol. 9: 99–122.

    Article  Google Scholar 

  • Fisher, S. G. & N. B. Grimm, 1991. Disturbance in running waters: Are cross-ecosystem comparisons useful? In J. Cole, S. Findley & G. Lovett (eds), Comparative analyses of ecosystems: Patterns, Mechanisms and Theories. Springer-Verlag, N.Y.: 196–221.

    Google Scholar 

  • Fretwell, S. D., 1987. Food chain dynamics: the central theory of ecology? Oikos. 50: 291–301.

    Article  Google Scholar 

  • Frost, T. M., D. L. DeAngelis, S. M. Barteil, D. J. Hall & S. H. Hurlburt, 1988. Scale in the design and interpretation of aquatic community research. In S. R. Carpenter (ed.), Complex interaction in lake ecosystems. Springer-Verlag, N.Y.: 229–258.

    Chapter  Google Scholar 

  • Gerlach, S. A., A. E. Hahn & M. Schrage, 1985. Size spectra of benthic biomass and metabolism. Mar. Ecol. Prog. Ser. 28: 167–177.

    Google Scholar 

  • Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter-feeding Zooplankton in an eutrophic lake. Ekol. Polska. 25: 179–225.

    Google Scholar 

  • Gilbert, J. J., 1988. Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms and the effects on Zooplankton community structure. Limnol. Oceanogr. 33: 1286–1303.

    Article  Google Scholar 

  • Gilliam, J. F., D. F. Fraser & A. M. Sabat, 1989. Strong effects of foraging minnows in a stream benthic invertebrate community. Ecology 70: 445–452.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1986. Predation and the evolution of vertical migration. Nature 320: 746.

    Article  Google Scholar 

  • Gliwicz, Z. M. & E. Seidlar, 1980. Food size limitation and algaeinterfering with food collection in Daphnia. Arch. Hydrobiol. 88: 155–177.

    Google Scholar 

  • Godbout, L. & R. H. Peters, 1988. Potential determinants of stable catch in the brook trout (Salvelinus fontinalis) sport fishery in Québec. Can. J. Fish. aquat. Sci. 45: 1771–1778.

    Article  Google Scholar 

  • Grant, J. & P. Schwinghamer, 1987. Size partitioning of microbial and microbenthic biomass and respiration on Brown–s Bank South-West Nova Scotia. Estuar. coast Shelf Sci. 25: 647–661.

    Article  Google Scholar 

  • Greene, C. H., P. H. Wiebe & J. Burczynski, 1989. Analyzing Zooplankton size distributions using high-frequency sound. Limnol. Oceanogr. 34: 129–139.

    Article  Google Scholar 

  • Greenslade, P. J. M., 1983. Adversity selection and the habitat templet. Am. Nat. 122: 352–365.

    Article  Google Scholar 

  • Grime, J. P., J. G. Hodgson & R. Hunt, 1988. Comparative Plant Ecology. Unwin Hyman, London, 742 pp.

    Google Scholar 

  • Grubb, P., 1989. A comment on Loehle–s critique of the triangular model of primary plant strategies. Ecology 69: 1618–1619.

    Google Scholar 

  • Grubb, P. J., 1986. Problems posed by sparse and patchily distributed species in species-rich plant communiies. In J. Diamond & T. J. Case (eds), Community Ecology. Harper and Row, N.Y.: 207–225.

    Google Scholar 

  • Hairston, N. G., F. E. Smith & L. B. Slobodkin, 1960. Community structure, population control, and competition. Am. Nat. 94: 421–425.

    Article  Google Scholar 

  • Hall, D. J., S. T. Threlkeld, C. W. Burns & P. H. Crowley, 1976. The size efficiency hypothesis and the size structure of Zooplankton communities. Ann. Rev. Ecol. Syst. 7: 177–208.

    Article  Google Scholar 

  • Hanson, J. M. & W. C. Leggett, 1982. Empirical prediction of fish biomass and yield. Can. J. Fish. aquat. Sci. 39: 257– 263.

    Article  Google Scholar 

  • Hanson, J. M. & R. H. Peters, 1984. Empirical prediction of crustacean Zooplankton biomass and profundal macrobenthos in lakes. Can. J. Fish. aquat. Sci.41439–445.

    Article  CAS  Google Scholar 

  • Hay, M., 1987. Herbivory, algal distribution and the maintenance of between habitat diversity on a tropical fringing reef. Am. Nat. 118: 520–540.

    Article  Google Scholar 

  • Herbland, A., A. LeBouteiller & P. Raimbault, 1985. Size structure of phytoplankton biomass in the equatorial Atlantic Ocean. Deep Sea Res. 32: 819–836.

    Article  Google Scholar 

  • Holm, N., G. G. Ganf & J. Shapiro, 1983. Feeding and assimilation rates of Daphnia pulex fed Aphanizomenon flos-aquae. Limnol. Oceanogr. 28: 677–687.

    Article  Google Scholar 

  • Hrbacek, J., 1962. Species composition and the amount of the Zooplankton in relation to the fish stock. Rozpravy CSAV 72: 1–116.

    Google Scholar 

  • Hrbacek, J., B. Desortvova & J. Popovsky, 1978. Influence of the fish stock on the phosphorus-chlorophyll ratio. Verh. int. Ver. Limnol. 20: 1624–1628.

    Google Scholar 

  • Hrbacek, J., M. Dvorakova, V. Korinek & L. Prochazkova, 1961. Demonstration of the effect of the fish stock on the species composition of Zooplankton and the intensity of metabolism of the whole plankton association. Ver. int. Ver. Limnol. 14: 192–195.

    Google Scholar 

  • Hutchinson, G. E., 1951. Copepodology for the ornithologist. Ecology 32: 571–577.

    Article  Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–146.

    Article  Google Scholar 

  • Infante, A. & S. E. B. Abella, 1985. Inhibition of Daphnia by Oscillatoria in Lake Washington. Limnol. Oceanogr. 30: 1046–1052.

    Article  Google Scholar 

  • Jones, J. R. & M. V. Hoyer, 1981. Sportfish harvest predicted as a function of summer standing crop in midwest lakes. Trans. am. Fish. Soc. 111: 176–179.

    Article  Google Scholar 

  • Kilham, P. & R. E. Hecky, 1988. Comparative ecology of marine and fresh-water phytoplankton. Limnol. Oceanogr. 33: 776–795.

    Article  Google Scholar 

  • Kilham, P. & S. S. Kilham, 1980. The evolutionary ecology of phytoplankton. In I. Morris (ed.), The Physiological Ecology of Phytoplankton. Univ. California Press, Berkeley: 571–597.

    Google Scholar 

  • Kuhn, T. S., 1977. The Essential Tension: Selected Studies in Scientific Tradition and Change. University of Chicago Press, Chicago, 366 pp.

    Google Scholar 

  • Lamberti, G. A., S. V. Gregory, L. R. Ashkenas, A. D. Steinman & C. D. Mclntire, 1989. Production capacity of periphyton as a determinant of plant-herbivore interactions in streams. Ecology 70: 1840–1856.

    Article  Google Scholar 

  • Lampert, W. & U. Schober, 1980. The importance of–threshold– food concentrations. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton communities. Univ. Press of New England, Hanover, N.H.: 264–267.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing Zooplankton: study on the spring clear-water phase. Limnol. Oceanogr. 31: 487–490.

    Article  Google Scholar 

  • Langeland, A., 1978. Effect offish (Salvelinus alpinus, arctic char) predation on the Zooplankton in ten Norwegian lakes. Verh. int. Ver. Limnol. 20: 2065–2069.

    Google Scholar 

  • LeBrasseur, R. J., C. D. McAllister, W. E. Barraclough, O. D.Kennedy, J. Manzer, D. Robinson & K. Stephens, 1978. Enhancement of sockeye salmon (Oncorhynchus nerka) by lake fertilization in Great Central Lake. J. Fish. Res. Bd Can. 35: 1580–1596.

    Article  Google Scholar 

  • Lehman, J. T., 1988a. Ecological principles affecting community structure and secondary production by Zooplankton in marine and freshwater environments. Limnol. Oceanogr. 33: 931–945.

    Article  Google Scholar 

  • Lehman, J. T., 1988b. Hypolimnetic metabolism in Lake Washington: Relative effects of nutrient load and food web structure on lake productivity. Limnol. Oceanogr. 33: 1334–1347.

    Article  CAS  Google Scholar 

  • Lehman, J. T. & C. D. Sandgren, 1982. Phosphorus dynamics of the procaryotic nannoplankton in a Michigan lake. Limnol. Oceanogr. 27: 828–838.

    Article  CAS  Google Scholar 

  • Lewis, S. W., 1986. The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol. Monogr. 56: 183–200.

    Article  Google Scholar 

  • Lodge, D. M., J. W. Barko, D. Strayer, J. M. Melack, G. G. Mittlebach, R. W. Howarth, B. Menge & J. E. Titus, 1988. Spatial heterogeneity and habitat interactions in lake communities. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer-Verlag, N.Y.: 180–208.

    Google Scholar 

  • Lubchenco, J., 1988. Relative importance of competition and predation: early colonization by seaweeds in New England. In J. Diamond & T. J. Case (eds), Community Ecology. Harper & Row, N.Y.: 537–555.

    Google Scholar 

  • Lubchenco, J. & S.D. Gaines, 1981. A unified approach to marine plant-herbivore interactions. I. Populations and communities. Ann. Rev. Ecol. Syst. 12: 405–437.

    Article  Google Scholar 

  • Lynch, M., 1980. Aphanizomenon blooms: alternate control and cultivation by Daphnia pulex, In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton communities. Univ. New England Press, Hanover, N.H.: 299–304.

    Google Scholar 

  • MacPherson, E., 1989. Influence of geographical distribution, body size and diet on population density of benthic fishes off Namibia (South West Africa). Mar. Ecol. Prog. Ser. 50: 295–299.

    Article  Google Scholar 

  • Mauchline, J., 1988. Egg and brood sizes of oceanic pelagic crustaceans. Mar. Ecol. Prog. Ser. 43: 251–258.

    Article  Google Scholar 

  • Maurer, B. A. & J. H. Brown, 1989. Distribution of energy use and biomass among species of North American terrestrial birds. Ecology 69: 1923–1932.

    Article  Google Scholar 

  • McCauley, E. & J. A. Downing, 1985. The prediction of cla- doceran grazing rate spectra. Limnol. Oceanogr. 30: 212–212.

    Article  Google Scholar 

  • McCauley, E. & J. Kalff, 1981. Empirical relationships between phytoplankton and Zooplankton biomass in lakes. Can. J. Fish. aquat. Sci.38: 458–463.

    Article  Google Scholar 

  • McCauley, E. & J. Kalff, 1987. Effect of changes in Zooplankton on orthophosphate dynamics of natural phytoplankton communities. Can. J. Fish. aquat. Sci. 44: 176–182.

    Article  CAS  Google Scholar 

  • McCauley, E., W. W. Murdoch & S. Watson, 1985. Simple models and variation in plankton densities among lakes. Am. Nat. 132: 383–403.

    Article  Google Scholar 

  • McGurk, M. D., 1986. Natural mortality of marine pelagic fish eggs and larvae: role of spatial patchiness. Mar. Ecol. Prog. Ser. 34: 227–242.

    Article  Google Scholar 

  • Mclntosh, R. P., 1985. The Background of Ecology: Concept and Theory. Cambridge University Press. Cambridge, N.Y.

    Book  Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Article  Google Scholar 

  • Melack, J. M., 1976. Primary productivity and fish yields in tropical lakes. Trans, am. Fish. Soc. 105: 575–580.

    Article  Google Scholar 

  • Miller, T. J., L. B. Crowder, J. A. Rice & E. A. Marschall, 1988. Larval size and recruitment mechanisms in fishes: Toward a conceptual framework. Can. J. Fish. aquat. Sci. 45: 1657–1670.

    Article  Google Scholar 

  • Mills, E. L. & J. L. Forney, 1988. Trophic dynamics and development of freshwater pelagic food webs. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer-Verlag, N.Y.: 11–30.

    Chapter  Google Scholar 

  • Mills, E. L. & A. Schiavone, 1982. Evaluation of fish communities through assessment of Zooplankton and measure of lake productivity. N. am. J. Fish. Man. 2: 14–27.

    Article  Google Scholar 

  • Minshall, G. W., 1988. Stream ecosystem theory: a global perspective. J. North am. Benthol. Soc. 7: 253–288.

    Article  Google Scholar 

  • Mittelbach, G. G., 1984. Predation and resource partitioning in two sunfishes (Centrachidae). Ecology 65: 499–513.

    Article  Google Scholar 

  • Morin, A. & R. H. Peters, 1988. Effect of microhabitat features, seston quality and periphyton on abundance of overwintering blackfly larvae in Southern Quebec. Limnol. Oceanogr. 33: 431–446.

    Article  CAS  Google Scholar 

  • Morin, P. J., 1984. The impact offish exclusion on the abundance and species composition of larval odonates: Results of short-term experiments in a North Carolina farm pond. Ecology 65: 53–60.

    Article  Google Scholar 

  • Morrisson, D., 1988. Comparing fish and urchin grazing in shallow and deep coral reef algal communities. Ecology 69: 1393–1400.

    Article  Google Scholar 

  • Moyle, J. B., 1956. Relationships between the chemistry of Minnesota surface waters and wildlife management. J. Wildl. Mgmt. 20: 303–320.

    Article  CAS  Google Scholar 

  • Naiman, R. J., 1988. Animal influences on ecosystem dynamics. Bioscience 38: 750–752.

    Article  Google Scholar 

  • Neil, W. E., 1988. Complex interactions in oligotrophic lake food webs: responses to nutrient enrichment. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer-Verlag, N.Y.: 31–44.

    Chapter  Google Scholar 

  • Northcote, T. G., 1988. Fish in the structure and function of freshwater ecosystems: a top-down view. Can. J. Fish. aquat. Sci. 45: 361–379.

    Article  Google Scholar 

  • Odum, E. P., 1969. The strategy of ecosystem development. Science 164: 262–270.

    Article  PubMed  CAS  Google Scholar 

  • Odum, H. T., 1957. Trophic structure and productivity of Silver Springs, Florida. Ecol. Monogr. 57: 111–128.

    Google Scholar 

  • Osenberg, C. W. & G. G. Mittelbach, 1989. Effects of body size on the predator-prey interaction between pumpkinseed sunfish and gastropods. Ecol. Monogr. 59: 405–432.

    Article  Google Scholar 

  • Pace, M. L., 1986. An empirical analysis of Zooplankton community size structure across lake trophic gradients. Limnol. Oceanogr. 31: 45–55.

    Article  Google Scholar 

  • Paine, R. T., 1977. Controlled manipulations in the marine intertidal zone and their contributions to ecological theory. In C. E. Goulden (ed.), The Changing Scenes in Natural Sciences. Academy of Natural Sciences, Philadelphia: 245–270.

    Google Scholar 

  • Paine, R. T., 1980. Food webs: linkage, interactions, strength of community infrastructure. J. anim. Ecol. 49: 667–685.

    Article  Google Scholar 

  • Paine, R. T. & R. L. Vadas, 1969. The effects of grazing by sea urchins, strongylocentratus spp. on benthic algal populations. Limnol. Oceanogr. 14: 710–719.

    Article  Google Scholar 

  • Palomares, M. L. & D. Pauly, 1989. A multiple regression model for predicting the food consumption of marine fish populations. Aust. J. mar. Freshwat. Res. 40: 259–273.

    Article  Google Scholar 

  • Parry, G. D., 1981. The meanings of r- and K-selection. Oecologia, 48: 260–264.

    Article  Google Scholar 

  • Pauly, D., 1980. On the inter-relationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. Cons. Intern. l–Explor. Mer. 39: 175–192.

    Google Scholar 

  • Pearre, S., 1986. Ratio based trophic niche breadth offish, the Sheldon spectrum and the size efficiency hypotheses. Mar. Ecol. Prog. Ser. 27: 299–314.

    Article  Google Scholar 

  • Persson, L., G. Andersson, S. F. Hamrin & L. Johansson, 1988. Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer-Verlag, N.Y.: 45–65.

    Chapter  Google Scholar 

  • Peters, R. H., 1977. Unpredictable problems with trophodynamics. Envir. Biol. Fishes 2: 97–102.

    Article  Google Scholar 

  • Peters, R. H., 1983a. The Ecological Implications of Body size. Cambridge University Press, Cambridge, 329 pp.

    Book  Google Scholar 

  • Peters, R. H., 1983b. Size structure of the plankton community along the trophic gradient of Lake Memphremagog. Can. J. Fish. aquat. Sci. 40: 1770–1778.

    Article  Google Scholar 

  • Peters, R. H., 1988. Some general problems for ecology illustrated by food web theory. Ecology 69: 1673–1676.

    Article  Google Scholar 

  • Peters, R. H., 1992. Lessons from the size efficiency hypothesis. I. The general refuge concept. Select. Symp. Monogr. Unione Zool. Ital. (in press).

    Google Scholar 

  • Peters, R. H., 1991. A Critique for Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Peters, R. H. & J. A. Downing, 1984. Empirical analysis of Zooplankton feeding and filtering rates. Limnol. Oceanogr. 29: 763–784.

    Article  Google Scholar 

  • Peters, R. H. & K. Wassenberg, 1983. The effect of body size on animal abundance. Oecologia, 60: 89–96.

    Article  Google Scholar 

  • Pianka, E. R., 1970. On r- and K-selection. Am. Natur. 104: 592–597.

    Article  Google Scholar 

  • Plante, C. & J. A. Downing, 1989. Production of freshwater invertebrate populations in lakes. Can. J. Fish. aquat. Sci. 46: 1489–1498.

    Article  Google Scholar 

  • Porter, K. G., 1988. Cell sorting techniques for microbial ecology. Ecology 69: 558–560.

    Article  Google Scholar 

  • Porter, K. G. & R. McDonough, 1984. The energetic cost of response to bluegreen algal filaments by cladocerans. Limnol. Oceanogr. 29: 365–369.

    Article  Google Scholar 

  • Power, M. E., A. J. Stewart & W. J. Matthews, 1988. Grazer control of algae in an Ozark mountain stream: effects of short-term exclusion. Ecology 69: 1894–1898.

    Article  Google Scholar 

  • Randall, J. E., 1961. Overgrazing of algae by herbivorous marine fishes. Ecology 42: 812.

    Article  Google Scholar 

  • Randall, J. E., 1965. Grazing effects on sea grasses by herbivorous reef fishes in the West Indies. Ecology 46: 255–260.

    Article  Google Scholar 

  • Regier, H. A., 1973. Sequences of exploitation of stocks in multispecies fisheries in the Laurentian great lakes. J. Fish. Res. Bd Can. 30: 1992–1999.

    Article  Google Scholar 

  • Reinertsen, H. & A. Langeland, 1982. The effect of lake fertilization on the stability and material utilization of a limnetic ecosystem. Hol. Ecol. 5: 311–324.

    CAS  Google Scholar 

  • Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, M. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. Wissmar, 1988. The role of disturbance in stream ecology. J. N. Am. Benthol. Soc. 7: 433–455.

    Article  Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.

    Google Scholar 

  • Rigler, F. H., 1956. A tracer study of the phosphorus cycle in lake water. Ecology 37: 550–562.

    Article  CAS  Google Scholar 

  • Robinson, C. L. K. & W. M. Tonn, 1989. Influence of environmental factors and piscivory in structuring fish assemblages in small Alberta lakes. Can. J. Fish. aquat. Sci. 46: 81–89.

    Article  Google Scholar 

  • Rodriguez, J. & M. M. Mullin, 1986. Relation between biomass and body weight of plankton in a steady state oceanic ecosystem. Limnol. Oceanogr. 31: 361–370.

    Article  Google Scholar 

  • Schlesinger, D. A., L. A. Molot & B. J. Shuter, 1981. Specific growth rates of freshwater algae in relation to cell size and light intensity. Can. J. Fish. aquat. Sci. 38: 1052–1058.

    Article  Google Scholar 

  • Schoener, T. W., 1989. Food webs from the small to the large. Ecology 70: 1559–1589.

    Article  Google Scholar 

  • Schwinghamer, P., 1981. Characteristic size distributions of integral benthic communities. Can. J. Fish. aquat. Sci. 38: 1255–1263.

    Article  Google Scholar 

  • Shapiro, J. & D. I Wright, 1984. Lake restoration and biomanipulation: Round Lake, Minnesota, the first two years. Freshwat. Biol. 14: 371–383.

    Article  Google Scholar 

  • Sheldon, R. W., 1984. Phytoplankton growth rates in the tropical ocean. Limnol. Oceanogr. 29: 1342–1346.

    Article  Google Scholar 

  • Shirayama, Y. & M. Horikoshi, 1989. Comparison of the benthic size structure between littoral, sublittoral, upperslope and deep-sea areas of the western Pacific. Int. Rev. ges. Hydrobiol. 74: 1–13.

    Article  Google Scholar 

  • Shuter, B. J., 1978. Size dependence of phosphorus and nitrogen subsistence quotas in unicellular microorganisms. Limnol. Oceanogr. 23: 1248–1255.

    Article  CAS  Google Scholar 

  • Smith, K. L. jr., 1985. Macrozooplankton of a deep sea hydrothermal vent: In situ rates of oxygen consumption. Limnol. Oceanogr. 30: 102–110.

    Article  Google Scholar 

  • Smith, R. E. & J. Kalff, 1982. Size dependent phosphorus uptake kinetics and cell quota in phytoplankton. J. Phycol. 18: 275–284.

    Article  CAS  Google Scholar 

  • Smith, R. E. & J. Kalff, 1983. Competition for phosphorus among co-occurring freshwater phytoplankton. Limnol.Oceanogr. 28: 448–464.

    Article  CAS  Google Scholar 

  • Smock, L. A., 1983. Relationships between metal concentration.Biol.13: 313–321.

    CAS  Google Scholar 

  • Sommer, U., 1989. Maximal growth rates of Antarctic phytoplankton: only weak dependence on cell size. Limnol. Oceanogr. 34: 1109–1112.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Sousa, W. P., S. C. Schroeter & S. D. Gaines, 1981. Latitudinal variation in intertidal algal community structure: the influence of grazing and vegetative propagation. Oecologia 48: 297–307.

    Article  Google Scholar 

  • Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? J. anim. Ecol. 46: 337–365.

    Article  Google Scholar 

  • Southwood, T. R. E., 1988. Tactics, strategies and templets. Oikos 52: 3–17.

    Article  Google Scholar 

  • Sprules, W. G., L. B. Holtby & G. Griggs, 1981. A microcomputer-based measuring device for biological research. Can. J. Zool. 59: 1611–1614.

    Article  Google Scholar 

  • Sprules, W. G., J. M. Casselman & B. J. Shuter, 1983. Size distribution of pelagic particles in lakes. Can. J. Fish. aquat. Sci. 40: 1761–1769.

    Article  Google Scholar 

  • Sprules, W. G. & M. Munawar, 1986. Plankton size spectra in relation to ecosystem productivity, size and perturbation. Can. J. Fish. aquat. Sci. 43: 1789–1794.

    Article  Google Scholar 

  • Stenson, J. A., E. Bohlin, T. Henrikson, L. Nilsson, B.I. Nymann, H. G. Oscarson & P. Larsson, 1978. Effects of fish removal from a small lake. Verh. int. Ver. Limnol. 20: 794–801.

    Google Scholar 

  • Stein, R. A., S. T. Threlkeld, C. D. Sandgren, W. G. Sprules, L. Persson, E. E. Werner, W. E. Neil & S. I. Dodson, 1988. In S. R. Carpenter (ed.), Complex interactions in lake communities. Springer-Verlag, N.Y., 161–180.

    Chapter  Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1985. Assessment of threshold food levels and population growth in planktonic rotifers. Archiv Hydrobiol. Beihefte. Ergebn. Limnol. 21: 269–75.

    Google Scholar 

  • Stockner, J. G., 1988. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33: 765–775.

    Article  CAS  Google Scholar 

  • Stockner, J. G. & K. G. Porter, 1988. Microbial food webs in freshwater planktonic ecosystems. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer-Verlag, N.Y.: 69–84.

    Chapter  Google Scholar 

  • Strayer, D., 1986. The size structure of a lacustrine zoobenthic community. Oecologia 69: 513–516.

    Article  Google Scholar 

  • Sutcliffe, W. H., 1970. Relationships between growth rate and ribonucleic acid concentration in some invertebrates. J. Fish. Res. Bd Can. 27: 606–609.

    Article  CAS  Google Scholar 

  • Taylor, W. D. & D. R. S. Lean, 1981. Radiotracer experiments on phosphorus uptake and release by limnetic microzooplankton. Can. J. Fish. aquat. Sci. 38: 1316–1321.

    Article  CAS  Google Scholar 

  • Tessier, A. J., L. L. Henry, C. E. Goulden & M. Durand,1983. Starvation in Daphnia: Energy reserves and reproductive allocation. Limnol. Oceanogr. 28: 667–676.

    Article  Google Scholar 

  • Thiel, H., 1975. The size structure of the Deep-sea benthos.Int. Revue ges. Hydrobiol. 60: 575–606.

    Google Scholar 

  • Threlkeld, S. T., 1976. Starvation and size structure of Zooplankton communities. Freshwat. Biol. 6: 489–496.

    Article  Google Scholar 

  • Threlkeld, S. T., 1988. Planktivory and planktivore biomass effects on Zooplankton, phytoplankton and the trophic cascade. Limnol. Oceanogr. 33: 1364–1377.

    Article  Google Scholar 

  • Vanni, M., 1986. Competition in Zooplankton communities: suppression of small species by Daphnia pulex. Limnol. Oceanogr. 31: 1039–1055.

    Article  CAS  Google Scholar 

  • Vanni, M. J., 1987. Effects of nutrients and Zooplankton size on the structure of a phytoplankton community. Ecology 68: 624–635.

    Article  Google Scholar 

  • Vanni, M., 1988. Freshwater Zooplankton community structure: introduction of large invertebrate predators and large herbivores to a small species community. Can. J. Fish. aquat. Sci. 45: 1758–1770.

    Article  Google Scholar 

  • Vézina, A. F., 1986. Body size and mass flow in freshwater plankton: models and tests. J. Plankton. Res. 8: 939–956.

    Article  Google Scholar 

  • Vollenweider, R. A., 1968. Scientific Fundamentals of Eutrophication of Lakes and Flowing Waters with Special Reference to Phosphorus and Nitrogen. OECD Paris. OECD/DAS/CSI/68.27.

    Google Scholar 

  • Warwick, R. M. & I. R. Joint, 1987. The size distribution of organisms in the Celtic sea: from bacteria to Metazoa. Oecologia 73: 185–191.

    Article  Google Scholar 

  • Waters, T. F., 1977. Secondary production in inland waters. Adv. Ecol. Res. 10: 91–164.

    Article  Google Scholar 

  • Watson, S. & J. Kalff, 1981. Relationships between nannoplankton and lake trophic status. Can. J. Fish. aquat. Sci. 38: 960–967.

    Article  Google Scholar 

  • Watson, S. & E. McCauley, 1988. Contrasting patterns of net and nanoplankton production and biomass among lakes. Can. J. Fish. aquat. Sci. 45: 915–920.

    Article  Google Scholar 

  • Webster, K. E. & R. H. Peters, 1978. Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnol. Oceanogr. 23: 1238–1244.

    Article  Google Scholar 

  • Werner, E. E., 1986. Species interactions in freshwater fish communities. In J. Diamond & T. J. Case (eds.), Community Ecology. Harper and Row, N.Y.: 344–358.

    Google Scholar 

  • Werner, E. E. & J. F. Gilliam, 1984. The ontogenetic niche and species interactions in size structured populations. Ann. Rev. Ecol. Syst. 15: 393–425.

    Article  Google Scholar 

  • Wharton, W. G. & K. G. Mann, 1981. Relationships between destructive grazing by sea-urchin Strongylocentrobus droebachiensis and the abundance of the American lobster Homarus americanus on the Atlantic coast of Nova Scotia. Can. J. Fish. aquat. Sci. 38: 1339–1349.

    Article  Google Scholar 

  • White, T. C. R., 1978. The importance of a relative shortage of food in animal ecology. Oecologia 33: 71–86.

    Article  Google Scholar 

  • Yan, N., 1986. Empirical prediction of crustacean Zooplankton biomass in nutrient-poor Canadian shield lakes. Can. J. Fish. aquat. Sci. 43: 788–796.

    Article  Google Scholar 

  • Zeuthen, E., 1969. Rate of living as related to body size in organisms. Pol. Arch. Hydrobiol. 17: 21–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. T. Hart P. G. Sly

Additional information

Dedicated to Dr Karl Banse, School of Oceanography, University of Washington on his 60th Birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Peters, R.H. (1992). Lessons from the size efficiency hypothesis II. The mire of complexity. In: Hart, B.T., Sly, P.G. (eds) Sediment/Water Interactions. Developments in Hydrobiology, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2783-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2783-7_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5236-8

  • Online ISBN: 978-94-011-2783-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics