Skip to main content

Human pharmacogenetics of nitrogen oxidations

  • Chapter
N-Oxidation of Drugs

Abstract

Drug and foreign compound biotransformations are mediated by a group of enzymes known collectively as the ‘drug-metabolizing enzymes’. These include the microsomal mixed function mono-oxygenases, commonly referred to as the cytochrome P-450s but also several non-cytochrome P-450 enzymes including the cytosolic alcohol dehydrogenase and the microsomal flavin-containing mono-oxygenase, otherwise known as Ziegler’s enzyme. Although such enzymes mediate the oxidation of xenobiotic compounds, many of them also have a known physiological role. Their activity is associated largely with the liver, however their presence has also been demonstrated in other tissues including lung, kidney and intestine. Furthermore, the enzymes of the gut flora are also known to be important mediators of the metabolism of certain xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Waiz, M. (1988) ‘Genetic, polymorphism of trimethylamine N-oxidation in man and its relationship to the fish-odour syndrome’. Ph.D. thesis. London University, pp.172–3.

    Google Scholar 

  • Al-Waiz, M., Ayesh, R., Mitchell, S.C. et al. (1987a) Disclosure of the metabolic retroversion of trimethylamine N-oxide in humans. Clin. Pharmacol. Ther., 42, 602–12.

    Google Scholar 

  • Al-Waiz, M., Mitchell, S.C, Idle, J.R. and Smith, R.L. (1987b) The metabolism of 14C-labelled trimethylamine and its N-oxidation in man. Xenobiotica, 17, 551–8.

    Article  PubMed  CAS  Google Scholar 

  • Al-Waiz, M., Ayesh, R., Mitchell, S.C. et al. (1987c) A genetic polymorphism of the N-oxidation of trimethylamine in humans. Clin. Pharmacol. Ther., 42, 588–94

    Article  PubMed  CAS  Google Scholar 

  • Al-Waiz, M., Ayesh, R., Mitchell, S.C. et al. (1987d) The relative importance of N oxidation and N-demethylation in the metabolism of trimethylamine in man. Toxicology, 43, 117–21.

    Article  PubMed  CAS  Google Scholar 

  • Al-Waiz, M., Ayesh, R., Mitchell, S.C. et al. (1988) Trimethylaminuria(2018Fish-odour syndrome’): a study of an affected family. Clinical Science, 74, 231–6.

    PubMed  CAS  Google Scholar 

  • Al-Waiz, M., Ayesh, R., Mitchell, S.C. et al. (1989) Trimethylaminuria: the detection of carriers using a trimethyalmine load test. J. Inherited Metab. Dis., 12, 80–85.

    Article  PubMed  CAS  Google Scholar 

  • Arbuthnot, J. (1735) in An Essay Concerning the Nature of Ailments, (3rd ed), J. Tonson, London, pp. 82–3.

    Google Scholar 

  • Ayesh, R., Al-Waiz, M., Crothers, M. J. et al. (1988) Deficient nicotine N-oxidation in two sisters with trimethylaminuria. Br. J. Clin. Pharmacol., 25, 664.

    Google Scholar 

  • Ayesh, R., Al-Waiz, M., McBurney, A. et al. (1989) Variable metabolism of pinacidil: lack of correlation with debrisoquine and trimethylamine C— and N-oxidative polymorphisms. Br. J. Clin. Pharmacol., 27, 423–8.

    Article  PubMed  CAS  Google Scholar 

  • Baker, J.R. and Chaykin, S. (1960) The biosynthesis of trimethylamine N-oxide. Biochim. Biophys. Acta, 41, 548–50.

    Article  PubMed  CAS  Google Scholar 

  • Baker, J.R. and Chaykin, S. (1962) The biosynthesis of trimethylamine N-oxide. J. Biol. Chem., 237, 1309–13.

    PubMed  CAS  Google Scholar 

  • Blumenthal, I., Lealman, G.T. and Franklyn, P.P. (1980) Fracture of femur, fish odour and copper deficiency in a preterm infant. Arch. Dis. Child., 55, 229–31.

    Article  PubMed  CAS  Google Scholar 

  • Brand, J.M. and Galask, R.P. (1986) Trimethylamine: the substance mainly responsible for the fishy odour often associated with bacterial vaginosis. Obstet. Gynaecol., 68, 682–5.

    CAS  Google Scholar 

  • Brewster, M.A. and Schedewie, H. (1983) Trimethylaminuria. Ann. Clin. Lab. Sci., 13,20–4

    PubMed  CAS  Google Scholar 

  • Cholerton, S., Ayesh, R., Idle, J.R. and Smith, R.L. (1988) The pre-eminence of nicotine N-oxidation and its diminution after carbimazole administration. Br. J. Clin. Pharmacol., 26, P652.

    Google Scholar 

  • Cholerton, S., Ayesh, R., Robinson, H. et al. (1989) Secondary trimethylaminurias: effect of liver disease on the N-oxidation of trimethylamine. Prog. Pharmacol. Clin. Pharmacol., in press.

    Google Scholar 

  • Damani, L.A., Pool, W.F., Crooks, P.A. et al. (1988) Stereoelectivity in the N-oxidation of nicotine isomers by flavin-containing monooxygenase. Mol. Pharmacol., 33,702–5.

    PubMed  CAS  Google Scholar 

  • Danks, D.M., Hammond, J., Schlesinger, P. et al. (1976) Trimethylaminuria: diet does not always control the fishy odour. N. Engl. J. Med., 295, 962.

    PubMed  CAS  Google Scholar 

  • De La Huerga, J. and Popper, M. (1951) Urinary excretion of choline metabolites following choline administration in normals and patients with hepatobiliary diseases. J. Clin. Invest., 30, 364–70.

    Google Scholar 

  • Dessaignes, M. (1856) Trimethylamin aus menschenharn. Justis Liebigs Annalen der Chemie, 100, 218.

    Article  Google Scholar 

  • Drayer, D.E. and Reidenberg, M.M. (1977) Clinical consequences of polymorphic acetylation of basic drugs. Clin. Pharmacol. Ther. 22,251–8.

    PubMed  CAS  Google Scholar 

  • Dunstan, W.R. and Goulding, E. (1899) The action of alkyl haloids on hydroxylamine. Formation of substituted hydroxylamines and oxamines. J. Chem. Soc. (Lond.), 75, 792–807.

    Article  CAS  Google Scholar 

  • Dyer, F.E. and Wood, A.J. (1947) Action of enterobacteriaceae on choline and related compounds. J. Fish. Res. Bd Can., 7, 17–21.

    Article  CAS  Google Scholar 

  • Dyer, D.J. (1952) Amines in fish muscle. VI. Trimethylamine oxide content of fish and marine vertebrates. J. Fish. Res. Bd Can., 8, 314–24.

    Article  CAS  Google Scholar 

  • Eichelbaum, M., Baur, M.P. and Dengler, H.J. (1987) Chromosomal assignment of human cytochrome P-450 (debrisoquine/sparteine type) to chromosome 22. Br. J. Clin. Pharmacol., 23, 455–8.

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum, M., Spannbrucker, N., Steincke, B. and Dengler, H.J. (1979) Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur. J. Clin. Pharmacol., 16, 183–7.

    Article  PubMed  CAS  Google Scholar 

  • Etienne, P., Gauther, S., Johnson, G. et al. (1978) Clinical effects of choline in Alzheimer’s disease. Lancet, i, 508–9.

    Article  Google Scholar 

  • Evans, D.A.P., Harmer, D., Downtham, D.Y. et al. (1983) The genetic control of sparteine and debrisoquine metabolism in man with new methods of analyzing bimodal distribution. J. Med. Genet. 20, 321–9.

    Article  PubMed  CAS  Google Scholar 

  • Fenwick, G.T., Heaney, R.K. and Mullin, J.W. (1983a) Glucosinolates and their breakdown products in food and food plants. CRC Crit. Rev. Food, Sci. Nutri. 18, 123–201.

    Article  CAS  Google Scholar 

  • Fenwick, G.R., Butler, E.J. and Brewster, M.A. (1983b) Are Brassica vegetables aggravating factors in trimethylaminuria? Lancet, i, 916.

    Article  Google Scholar 

  • Goedde, G.S. and Altland, K. (1971) Suxamethonium sensitivity. Ann. NY Acad. Sci., 179, 666–70.

    Article  Google Scholar 

  • Gonzalez, F.G., Skoda, R.C., Kimura, S. et al. (1988) Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature, 331,442–6.

    Article  PubMed  CAS  Google Scholar 

  • Growden, J.H., Cohen, E.L. and Wurtmann, R.J. (1977) Huntington’s disease: clinical and chemical effects of choline administration. Ann. Neurol., 1, 418–22.

    Article  Google Scholar 

  • Harris, H. (1980) in The Principles of Human Biochemical Genetics (4th edn), North Holland, Amsterdam.

    Google Scholar 

  • Higgins, T., Chagkin, S., Hammond, K.B. and Humbert, J.R. (1972) Trimethylamine N-oxide synthesis; human variant. Biochem. Med., 6, 392–6.

    Article  PubMed  CAS  Google Scholar 

  • Hlavica, P. and Kehl, M. (1977) Studies on the mechanism of hepatic microsomal N-oxide formation. The role of cytochrome P-450 and mixed-function amine oxidase in the N-oxidation of N,N-dimethylaniline. Biochem. J., 164, 487–96.

    PubMed  CAS  Google Scholar 

  • Humbert, J.R., Hammond, K.B., Hathaway, W.E. et al. (1970) Trimethylaminuria: the fish-odour syndrome. Lancet, i, 770–1.

    Article  Google Scholar 

  • Johnson, G.B. (1973) Importance of substrate variability to enzyme polymorphism. Nature, 243, 151–3.

    CAS  Google Scholar 

  • Johnson, G.B. (1974) Enzyme polymorphism and metabolism. Science, 184, 28–37.

    Article  PubMed  CAS  Google Scholar 

  • Kadlubar, F.F., Miller, J.A. and Miller, E.C. (1976) Microsomal N-oxidation of the hepatocarcinogen N-methyl-4-aminoazobenzene and the reactivity of N-hydroxy-N-methyl-4-aminoazobenzene. Cancer Res. 36, 1196–206.

    PubMed  CAS  Google Scholar 

  • Lee, C.W.G., Tu, J.S., Turner, B.R. and Murphy, K.E. (1976) Trimethylaminuria: fishy odours in children. N. Engl. J. Med., 295, 937–8.

    Article  PubMed  CAS  Google Scholar 

  • Lintzel, W. (1934) Trimethyloxyd. Menschlichen Harn. Klin. Wochenschr., 13,304–5.

    Article  CAS  Google Scholar 

  • Love, R.M. (1980) in The Chemical Biology of Fishes, Academic Press, London, pp. 458–9.

    Google Scholar 

  • Mahgoub, A., Idle, J.R., Dring, L.G. et al. (1977) Polymorphic hydroxylation of debrisoquine in man. Lancet, ii, 484–6.

    Google Scholar 

  • Marks, R., Graves, M.W., Prottey, C. and Hartop, P.J. (1977) Trimethylaminuria: the use of choline as an aid to diagnosis. Br. J. Dermatol., 96, 399–402.

    Article  PubMed  CAS  Google Scholar 

  • Marks, R., Dudley, F. and Wan, A. (1978) Trimethylamine metabolism in liver disease. Lancet, i, 1106–7.

    Article  Google Scholar 

  • McManus, M.E., Stupans, J., Burgers, W. et al. (1987) Flavin-containing monooxygenase activity in human liver microsomes. Drug Metab. Dispos., 15, 256–61.

    PubMed  CAS  Google Scholar 

  • Mitchell, M.E. (1978) Carnitine metabolism in human subjects. I. Normal metabolism. Am. J. Clin. Nutr. 31, 293–306.

    PubMed  CAS  Google Scholar 

  • Mitchell, S.C, Waring, R.H., Haley, C.S. et al. (1984) Genetic aspects of the polymodally distributed sulphoxidation of S-carboxymethyl-L-cysteine in man. Br. J. Clin. Pharmacol., 18, 507–21.

    Article  PubMed  CAS  Google Scholar 

  • Norris, E.R. and Benoit, G.J. (1945) Studies on trimethylamine oxide. I Occurrence of trimethylamine oxide in marine organisms. J. Biol. Chem., 158, 433–8.

    CAS  Google Scholar 

  • Oginsky, E.L., Stein, A.E. and Greer, M.A. (1965) Myrosinase activity in bacteria as demonstrated by the conversion of progoitrin to goitrin. Proc. Soc. Exp. Biol. Med., 119,360–4

    PubMed  CAS  Google Scholar 

  • Pearson, A.W., Butler, E.J., Curtis, R.F. et al. (1979) Effects of rapeseed meal on trimethylamine metabolism in the domestic fowl in relation to egg taint. J. Sci. Food Agric., 30, 799–804.

    Article  CAS  Google Scholar 

  • Pearson, A.E., Fenwick, G.R., Greenwood, N.M. and Butler, E.J. (1980) The effects of goitrogens on the oxidation of trimethylamine in the domestic fowl (Galius domestical). Comp. Biochem. Biophys., 67A, 397–401.

    CAS  Google Scholar 

  • Pearson, A.W., Greenwood, N.M., Butler, E.J. and Fenwick, G.R. (1981) The inhibition of trimethylamine oxidation in the domestic fowl (Gallus domesticus). Comp. Biochem. Biophys., 69C, 207–12.

    Google Scholar 

  • Prentiss, P.G., Rosen, H., Brown, N. et al. (1961) The metabolism of choline in the germ free rat. Arch. Biochem. Biophys., 94, 424–9.

    Article  PubMed  CAS  Google Scholar 

  • Ronald, O.A. and Jakobson, F. (1947) Trimethylamine oxide in marine products. J. Soc. Chem. Ind., 66, 160–6.

    Article  Google Scholar 

  • Rothschild, J.C. and Hansen, R.C. (1985) Fish odour syndrome: trimethylaminuria with milk a chief dietary factor. Pediatr. Dermatol., 3, 38–39c.

    Article  PubMed  CAS  Google Scholar 

  • Ruocco, V., Florio, M., Grimaldi Filioli, F. et al. (1989) An unusual case of trimethylaminuria. Br. J. Dermatol., 120, 459–61.

    Article  PubMed  CAS  Google Scholar 

  • Saborin, P.J. and Hodgson, E. (1984) Characterization of purified microsomal FAD-containing monooxygenase from mouse and pig liver. Chem. Biol. Interact., 51, 125–39.

    Article  Google Scholar 

  • Shelley, E.D. and Shelley, W.B. (1984) The fish-odour syndrome, trimethylaminuria. J. Am. Med. Assoc., 251, 253–5.

    Article  CAS  Google Scholar 

  • Shewan, J.M. (1951) The chemistry and metabolism of the nitrogen extractives of fish. Biochem. Soc. Symp., 6, 28–48.

    Google Scholar 

  • Simenhoff, M.L., Burke, J.F., Sankkonen, J.J. et al. (1977) Biochemical profile of uraemic breath. N. Engl. J. Med., 297, 132–5.

    Article  PubMed  CAS  Google Scholar 

  • Spellacy, E., Watts, R.W.E. and Goolamali, S.K. (1979) Trimethylaminuria. J. Inherited Metab. Dis., 2, 85–8.

    Article  Google Scholar 

  • Suwa, A. (1909) Untersuchungen uber die organextrakte der selachier. I. Die muskelextraktstoffe des dornhaies. Arch. Ges. Physiol., 128, 421–6.

    Article  Google Scholar 

  • Todd, A.W. (1979) Psychological problems as the major complication of an adolescent with trimethylaminuria. J. Pediatr., 94, 936–7.

    Article  PubMed  CAS  Google Scholar 

  • Tver, D.F. and Russell, P. (1981) in Nutrition and Health Encyclopaedia, Von Nostrand Rheinhold, New York, p. 100.

    Google Scholar 

  • Tynes, R.E. and Hodgson, E. (1985) Catalytic activity and substrate specificity of the flavin-containing monooxygenase in microsomal systems: characterization of the hepatic, pulmonary and renal enzymes of the mouse, rabbit and rat. Arch. Biochem. Biophys., 240, 77–93.

    Article  PubMed  CAS  Google Scholar 

  • Tynes, R.E., Sabourin, P.J. and Hodgson, E. (1985) Identification of distinct hepatic and pulmonary forms of microsomal flavin-containing monooxygenase in the mouse and rabbit. Biochem. Biophys. Res. Commun., 126, 1069–75.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, F. (1959) Moderne Probleme der Humangenetik. Ergeb. Inn. Med. Kinderheilk., 12,52–125.

    Article  Google Scholar 

  • Willey, G.R. (1985) Trimethylamine — a pungent experience. Educ. Chem., 22, 178–81.

    CAS  Google Scholar 

  • Williams, D.E., Hale, S.E., Meurhoff, A.S. and Masters, B.B.S. (1985) Rabbit lung flavin-containing monooxygenase. Purification, characterization and induction during pregnancy. Mol. Pharmacol., 28, 381–90.

    PubMed  CAS  Google Scholar 

  • Wills, M.R. and Savory, J. (1981) Biochemistry of renal failure. Annal. Clin. Lab. Sci., 11,292–9.

    CAS  Google Scholar 

  • Wranne, L. (1956) Urinary excretion of trimethylamine and trimethylamine N-oxide following trimethylamine administration to normal and patients with liver disease. Acta Med. Scand., 153, 433–41.

    Article  PubMed  CAS  Google Scholar 

  • Zeisel, S.H. (1981) Dietary choline: biochemistry, physiology and pharmacology. Ann. Rev. Nutr., I, 95–121.

    Article  Google Scholar 

  • Ziegler, D.M. (1980) Microsomal flavin-containing monooxygenase: oxygenation of nucleophilic nitrogen and sulphur compounds, in Enzymatic Basis of Detoxification (ed. W.B. Jakoby), Academic Press, New York, pp. 201–27.

    Google Scholar 

  • Ziegler, D.M. (1985) Molecular basis for N-oxygenation of sec- and tert-amines, in Biological Oxidation of Nitrogen in Organic Molecules — Chemistry, Toxicology and Pharmacology (eds J.W. Gorrod and L.A. Damani), Ellis Horwood, Chichester, pp. 43–52.

    Google Scholar 

  • Ziegler, D.M. and Mitchell, C.H. (1972) Microsomal oxidase. IV Properties of a mixed function amine oxidase isolated from pig liver microsomes. Arch. Biochem. Biophys., 150, 116–25.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler, D.M. and Poulsen, L.L. (1977) Protein disulphide bond synthesis: a possible intracellular mechanism, Trends in Biochemical Sciences, 2, 79–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cholerton, S., Smith, R.L. (1991). Human pharmacogenetics of nitrogen oxidations. In: Hlavica, P., Damani, L.A. (eds) N-Oxidation of Drugs. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3112-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3112-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5378-5

  • Online ISBN: 978-94-011-3112-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics