Skip to main content

Molecular Simulations of Non-Equilibrium Large Scale Phenomena in Fluids

  • Chapter
Computer Simulation in Materials Science

Part of the book series: NATO ASI Series ((NSSE,volume 205))

  • 465 Accesses

Abstract

In this article, we discuss the possibilities offered by microscopic simulations to examine the validity of the Navier Stokes equations of hydrodynamics for small space and time scales and when the constraints imposed on the model fluids are large. We discuss the dilute gas case in order to illustrate the deficiency of an analytical approach. We then focus on direct observation of dense fluids under constraints by molecular dynamics. The ability to simulate the Rayleigh-BĂ©nard instability with 5000 hard disks, with a remarkable agreement with macroscopic behavior, provides a direct strong evidence that the hydrodynamical scale is very near the atomic scale. Possible extension of direct non-equilibrium simulations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. also at Universié Libre de Bruxelles, Service de Chimie-Physique, CP 231, Campus Plaine, B1050 Brussels, Belgium

    Google Scholar 

  2. L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon Press, London (1958)

    Google Scholar 

  3. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics. J Wiley- Interscience (New York, 1975)

    MATH  Google Scholar 

  4. G. E. Ulhenbeck and G. W. Ford, Lectures in Statistical Mechanics, American Mathematical Society, Providence (1963)

    Google Scholar 

  5. J. P. Boon, S. Yip, Molecular Hydrodynamics. Mac Graw-Hill, New York (1980)

    Google Scholar 

  6. P. RĂ©sibois, M. Deleener, Classical Kinetic Theory of fluids. J. Wiley- Inter science, New York (1977)

    Google Scholar 

  7. W. G. Hoover and W. T. Ashurst, in Theoretical Chemistry, vol 1: Advances and perspectives (Academic Press, New York, 1975)

    Google Scholar 

  8. A. Tenenbaum, G. Ciccotti, R. Gallico, Phys. Rev. A25, 2778 (1982)

    ADS  Google Scholar 

  9. S. R. de Groot, P. Mazur. Non-equilibrium Thermodynamics. North-Holland Publishing, Amsterdam (1962)

    Google Scholar 

  10. C. Kittel, Phys. Today, 5, 93 ( May1988)

    Article  Google Scholar 

  11. S. Harris, An Introduction to the Theory of the Boltzmann Equation. Holt, Rinehart and Winston, New York (1971).

    Google Scholar 

  12. S. Chapman, T. G. Cowling, The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1960)

    MATH  Google Scholar 

  13. see J. D. Foch and G. W. Ford in Studies in Statistical Mechanics, volume V, editors J. de Boer and G. E. Uhlenbeck, North Holland, Amsterdam (1970)

    Google Scholar 

  14. P. J. Clause and M. Mareschal, Phys. Rev. A38, 4241 (1988)

    ADS  Google Scholar 

  15. M. P. Allen, D. Tildesley, Computer Simulation of Liquids. Clarendon, Oxford (1987);

    MATH  Google Scholar 

  16. J. P. Hansen, I. R. Mae Donald, Theory of Simple Liquids. Academic, New York (1976); Molecular-Dynamics Simulation of Statistical-Mechanical Systems, edited by G. ClCCOTTl and W. G. HOOVER, North Holland, Amsterdam (1987).

    Google Scholar 

  17. see for instance D. Massignon, Mecanique Statistique des Fluides. Dunod, Paris (1957)

    Google Scholar 

  18. W. E. Alley and B. J. Alder, Phys. Rev. A27, 3158 (1983)

    ADS  Google Scholar 

  19. W. E. Alley, B. J. Alder, S. Yip, Phys. Rev. A27,3174 (1983)

    ADS  Google Scholar 

  20. M. Mareschal and M. Malek Mansour, to be published

    Google Scholar 

  21. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford (1961).

    MATH  Google Scholar 

  22. M. Mareschal and E. Kestemont, Nature 329, 427 (1987

    Article  ADS  Google Scholar 

  23. M. Mareschal and E. Kestemont, ,J. Stat. Phys. 48, 1187(1987)

    Article  ADS  Google Scholar 

  24. M. Mareschal, M. Malek-Mansour, A. Puhl and E. Kestemont, Phys. Rev. Lett.,61, 2550 (1988)

    Article  ADS  Google Scholar 

  25. D. C. Rapaport, Phys. Rev. Lett. 60, 2480 (1988)

    Article  ADS  Google Scholar 

  26. D. C. Rapaport, to be published.

    Google Scholar 

  27. G. A. Bird, Molecular Gas Dynamics. Clarendon Press, Oxford (1976)

    Google Scholar 

  28. R. Monaco, (editor) Discrete Kinetic Theory, Lattice Gas Dynamics and the Foundations of Hydrodynamics. World Scientific, Singapore (1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mareschal, M. (1991). Molecular Simulations of Non-Equilibrium Large Scale Phenomena in Fluids. In: Meyer, M., Pontikis, V. (eds) Computer Simulation in Materials Science. NATO ASI Series, vol 205. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3546-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3546-7_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5570-3

  • Online ISBN: 978-94-011-3546-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics