Skip to main content

A Reverse Communication Interface for “Matrix-free” Preconditioned Iterative Solvers

  • Chapter
Applications of Supercomputers in Engineering II
  • 87 Accesses

Abstract

This paper describes an interface for a set of “matrix-free” preconditioned iterative routines for solving a sparse linear system Ax = b. These routines are matrix-free in the sense that only dense linear algebra operations are performed internally. By using reverse communication, all sparse linear algebra operations, i. e., those that depend on the matrix A or preconditioners for A, are computed outside these routines. Thus, these routines can be used regardless of the representation of A since only the action of A on a given vector is needed.

Along with its description, we also discuss the advantages and disadvantages of this interface and demonstrate its use by providing an example. A brief comparison with other common interfaces is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. F. Ash by and M. K. Seager. A proposed standard for iterative linear solvers. Technical report, Lawrence Livermore National Laboratory, January 1990.

    Google Scholar 

  2. C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. GreenBaum, S. Hammarling, and D. Sorenson. LAPACK working note #5: Provisional contents. Technical Report ANL-MCS-TM-122, Argonne National Laboratory, July 1988.

    Google Scholar 

  3. J. J. Dongarra, J. Bunch, C. Moler, and G. Stewart. UNPACK Users’ Guide. SIAM Pub., 1979.

    Google Scholar 

  4. J. Dongarra, J. DuCroz, I. Duff, and Sven Hammarling. A proposal for a set of level 3 basic linear algebra subprograms. Technical Report ANL-MCS-TM-88, Argonne National Laboratory, April 1987.

    Google Scholar 

  5. J.J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson. An extended set of fortran basic linear algebra subprograms. ACM Transactions on Mathematical Software, 14, 1988.

    Google Scholar 

  6. M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Res. National Bureau of Standards, 49:409–436, 1952.

    MathSciNet  MATH  Google Scholar 

  7. A. Hindmarsh. Reverse communication in general—purpose fortran math software. Tentacle, 4(11):2–7, November 1984.

    MathSciNet  Google Scholar 

  8. D. R. Kincaid, T. C. Oppe, J. R. Respess, and D. M. Young. ITPACKV 2C user’s guide. Technical Report CNA-191, Center for Numerical Analysis, The University of Texas at Austin, November 1984.

    Google Scholar 

  9. C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Algorithm 539: Basic linear algebra subprograms for fortran usage. ACM Transactions on Mathematical Software, 5, 1979.

    Google Scholar 

  10. C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for fortran usage. ACM Transactions on Mathematical Software, 5, 1979.

    Google Scholar 

  11. T. C. Oppe, W. D. Joubert, and D. R. Kincaid. NSPCG User’s Guide. Center for Numerical Analysis, The University of Texas at Austin, December 1988.

    Google Scholar 

  12. Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, July 1986.

    Article  MathSciNet  MATH  Google Scholar 

  13. Mark K. Seager. A SLAP for the masses. Technical report, Lawrence Livermore National Laboratory, December 1988.

    Google Scholar 

  14. B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler. Matrix Eigensystem Routines - EISPACK Guide, volume 6 of Lecture Notes in Computer Science. Springer-Verlag, New York, second edition, 1976.

    Google Scholar 

  15. P. Sonneveld. CGS, a fast lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 10(1):36–52, January 1989.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Computational Mechanics Publications

About this chapter

Cite this chapter

Heroux, M.A. (1991). A Reverse Communication Interface for “Matrix-free” Preconditioned Iterative Solvers. In: Brebbia, C.A., Peters, A., Howard, D. (eds) Applications of Supercomputers in Engineering II. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3660-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3660-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-695-9

  • Online ISBN: 978-94-011-3660-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics