Skip to main content

Optically Active Silicon-Containing Polymers

  • Chapter
Silicon-Containing Polymers

Abstract

Optically active chiral macromolecules have been around since the dawn of time and indeed our whole universe, from atoms upwards, is chiral [1] In biological systems, at least, it is not the presence of optical activity which is remarkable, but rather its absence. DNA is a classic example of a chiral macromolecule, its chirality deriving from two features: (i) the incorporation of chiral sugars (to which are attached chromophoric bases such as adenine, guanine, cytosine and thymine) and (ii) the macromolecular helical conformation arising from base stacking in hydrogen-bonding solvents (a helix is a chiral motif). The task of covalently linking small molecules to form well defined, single screw sense, rigid helical rod polymers with a single molecular weight is a longstanding issue in modern polymer stereochemistry [2]. Such polymers are usually produced only during the course of precisely controlled polymerisation reactions using very specialised monomers and stereospecific catalysts [3]. The synthesis and quantitative conformational analysis by direct spectroscopic characterisation of such ideal polymers, therefore, are very challenging [4]. Synthetic polymers are non-ideal, however, comprising a mixture of molecular weights and stereoisomers and the most prominent properties of the ideal polymer remain a challenge. Synthetic polymers containing enantiopure chiral side groups including polyisocyanides [5], polyisocyanates [6], polyacetylenes [7], polythiophenes [8] poly(p-phenylenevinylene)s [9] and polysilanes, [10] may also adopt preferential screw sense (PSS) helical backbone conformations because of side group interactions. Concerning the analysis of optical active materials, there are several techniques available: optical rotation (rotation of the plane of linearly polarised light on passing through the sample), ellipticity (almost never measured directly), single crystal X-ray crystallography (when crystals can be grown) and circular dichroism (CD; differential absorption of left and right circularly polarised light). For the purposes of structure elucidation, the last two techniques provide the most information, but in the case of most macromolecules, X-ray crystallography is not feasible due to the lack of suitable crystals. Thus, the most appropriate technique for the analysis of optically active polymers is CD spectroscopy, which permits the direct analysis of chiral backbone physical and electronic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.F. Mason in Circular Dichroism. Principles and Applications, K. Nakanishi, N Berova and R.W. Woody, eds., VCH New York, 1994, Ch 2, p 39.

    Google Scholar 

  2. M. Farina, Top Stereochem. 1987, 17, 1.

    Article  CAS  Google Scholar 

  3. Y. Okamoto and T. Nakano, Chem. Rev. 1994, 94, 349.

    Article  CAS  Google Scholar 

  4. L. Pu, Acta Polym. 1997, 48, 116.

    Article  CAS  Google Scholar 

  5. P.C.J. Kamer, M.C. Cleij, R.J.M. Nolte, T. Harada, A.M.F. Hezemans and W. Drenth, J. Am. Chem. Soc. 1988, 110, 1581.

    Article  CAS  Google Scholar 

  6. M. Goodman and S.-C. Chen, Macromolecules, 1971, 4, 625;

    Article  CAS  Google Scholar 

  7. M.M. Green, M.P. Reidy, R.J. Johnson, G. Darling, D.J. O’Leary and G. Willson, J. Am. Chem. Soc. 1989, 111, 6452;

    Article  Google Scholar 

  8. M.M. Green, N.C. Peterson, T. Sato, A. Teramoto, R. Cook and S. Lifson, Science 1995, 268, 1860 and refs. therein.

    Google Scholar 

  9. E. Yashima, T. Matsushima and Y. Okamoto, J. Am. Chem. Soc. 1995, 117, 1 1597.

    Google Scholar 

  10. E. Yashima, S. Huang, T. Matsushima and Y. Okamoto, Macromolecules, 1995, 28, 4184.

    Article  CAS  Google Scholar 

  11. E. Yashima, Y. Maeda and Y. Okamoto, J. Am. Chem. Soc. 1998, 120, 8895.

    Article  CAS  Google Scholar 

  12. E. Yashima, K. Maeda and Y. Okamoto, Nature, 1999, 399, 449.

    Article  CAS  Google Scholar 

  13. M.M. Bouman and E.W. Meijer, Adv. Mater. 1995, 7, 385.

    Article  CAS  Google Scholar 

  14. B.M.W. Langeveld-Voss, R.J.M. Waterval, R.A.J. Janssen and E.W. Meijer, Macromolecules, 1999, 32, 227.

    Article  CAS  Google Scholar 

  15. E. Peeters, M.P.T. Christiaans, R.A.J. Janssen, H.F.M. Schoo, H.P J.M. Dekkers and E.W. Meijer, J. Am. Chem. Soc. 1997, 119, 9909.

    Article  CAS  Google Scholar 

  16. E. Peeters, A. Delmotte, R.A.J. Janssen and E.W. Meijer, Adv. Mater. 1997, 9, 493.

    Article  CAS  Google Scholar 

  17. K. Matyjaszewski, J. Inorg. Organomet. Polym. 1992, 2, 5.

    Article  CAS  Google Scholar 

  18. M. Fujiki, J. Am. Chem. Soc. 1994, 116, 6017.

    Article  CAS  Google Scholar 

  19. Circular Dichroism: Principles and Applications, K. Nakanishi, N. Berova and R.W. Woody, eds, VCH. New York, 1994.

    Google Scholar 

  20. K. Nakanishi and N. Berova in Circular Dichroism Principles and Applications, ibid., Ch.13.

    Google Scholar 

  21. Circular Dichroic Spectroscopy: Exciton Coupling in Organic Chemistry, N. Harada and K. Nakanishi, University Science Books: Oxford, 1983.

    Google Scholar 

  22. H.P.J.M. Dekkers in Circular Dichroism: Principles and Applications, ibid, Ch. 6.

    Google Scholar 

  23. J.R. Koe, D.R. Powell, J.J. Buffy, S. Hayase and R. West, Angew. Chem. 1998, 37, 1441.

    Article  CAS  Google Scholar 

  24. Q.-S. Hu, D. Vitharana, G. Liu, V. Jain, M.W. Wagaman, L. Zhang, T.R. Lee and L. Pu, Macromolecules, 1996, 29, 1082.

    Article  CAS  Google Scholar 

  25. L. Pu, Acta. Polymer, 1997, 48, 116.

    Article  CAS  Google Scholar 

  26. T.J. Deming and B.J. Novak, J. Am. Chem. Soc. 1992, 114, 7926.

    Article  CAS  Google Scholar 

  27. F. Takei, Y. Koichi, K. Onitsuka and S. Takahashi, Angew. Chem., Int. Ed. Engl. 1996, 35, 1554.

    Article  CAS  Google Scholar 

  28. M.R. Majidi, L.A.P Kane-Maguire and G.G. Wallace, Polymer, 1994, 35, 3113.

    Article  CAS  Google Scholar 

  29. M.R. Majidi, L.A.P Kane-Maguire and G.G. Wallace, Polymer 1995, 36, 3597.

    Article  CAS  Google Scholar 

  30. M.R. Majidi, L.A.P. Kane-Maguire and G.G. Wallace, Polymer 1996, 37, 359.

    Article  CAS  Google Scholar 

  31. E.E. Havinga, M.M. Bouman, E.W. Meijer, A. Pomp and M.M.J. Simenon, Synth. Met. 1994, 66, 93.

    Article  CAS  Google Scholar 

  32. R.J.M. Nolte, A.J.M. van Beijnen and W. Drenth, J. Am. Chem. Soc. 1974, 96, 5932.

    Article  CAS  Google Scholar 

  33. D. Terunuma, K. Nagumo, N. Kamata, K Matsuoka and H. Kuzuhara, Chem. Lett. 1998, 7, 681.

    Article  Google Scholar 

  34. K. Obata, C. Kabuto and M Kira, J. Am. Chem. Soc. 1997, 119, 1 1345.

    Google Scholar 

  35. K. Obata, M. Kira, Macromolecules, 1998, 31, 4666.

    Article  CAS  Google Scholar 

  36. K. Shinohara, T. Aoki, T Kaneko and E. Oikawa, Chem. Lett. 1997, 6, 361.

    Article  Google Scholar 

  37. J.R. Koe, M. Fujiki and H. Nakashima, J. Am. Chem. Soc. 1999, 121, 9734.

    Article  CAS  Google Scholar 

  38. H. Frey, M. Möller, and K. Matyjaszewski, Macromolecules 1994, 27, 1814.

    Article  CAS  Google Scholar 

  39. H. Frey, M. Möller, A. Turetskii, B. Lots and K. Matyjaszewski, Macromolecules, 1995, 28, 5498.

    Article  CAS  Google Scholar 

  40. M. Fujiki, Polym. Prepr. (ACS Polym. Sci. Div.) 1996, 37 (2), 454.

    CAS  Google Scholar 

  41. B. Albinsson, H. Teramae, J.W. Downing and J. Michl, Chem. Eur. J. 1996, 2, 529.

    Article  CAS  Google Scholar 

  42. R. Imhof, H. Teramae and J. Michl, Chem. Phys. Lett. 1997, 270, 500.

    Article  CAS  Google Scholar 

  43. L.A. Harrah and J.M. Zeigler, J. Polym. Sci., Polym. Lett. Ed. 1985, 23, 209.

    Article  CAS  Google Scholar 

  44. P. Trefonas III, J.R. Damewood Jr., R. West and R.D Miller Organometallics, 1985, 4, 1318.

    Article  CAS  Google Scholar 

  45. R.D. Woody and I. Tinoco, J. Chem. Phys. 1967, 46, 4927.

    Article  CAS  Google Scholar 

  46. I. Tinoco, Chim. Phys. 1968, 65, 91.

    CAS  Google Scholar 

  47. M. Fujiki, J. Am. Chem. Soc. 1994, 116, 1 1976.

    Google Scholar 

  48. M. Fujiki, Appl. Phys. Lett. 1994, 65, 3251.

    Article  CAS  Google Scholar 

  49. M. Fujiki, S. Toyoda, C-H. Yuan and H. Takigawa, Chirality 1998, 10, 667.

    Article  CAS  Google Scholar 

  50. H.G. Hansma, J. Vesenka, C. Siegerist, G. Kelderman, H. Morrett, R.L. Sinsheimer, V. Elings, C. Bustamante and P.K. Hansma, Science, 1992, 256, 1180.

    Article  CAS  Google Scholar 

  51. B. Samon, C. Nigro, A. Gordano, I. Muzzalupo and C. Quagliariello, Angew. Chem. Int. Ed. Engl. 1996, 35, 529.

    Article  Google Scholar 

  52. J Kumaki, Y Nishikawa and T. Hashimoto, J. Am. Chem. Soc. 1996, 118, 33213.

    Article  Google Scholar 

  53. U.B. Steiner, M. Rehahn, W.R. Caseri and U.W. Suter, Macromolecules, 1994, 27, 1983.

    Article  CAS  Google Scholar 

  54. K. Ebihara, S. Koshihara, M. Yoshimoto, T. Maeda, T. Ohnishi, H. Koinuma and M. Fujiki, Jpn. J. Appl.Phys. 1997, 36, L1211.

    Article  Google Scholar 

  55. T. Ichikawa, Y. Yamada, J. Kumagai and M. Fujiki, Chem. Phys. Lett. 1999, 306, 275.

    Article  CAS  Google Scholar 

  56. M.M. Green, N.C. Peterson, T. Sato, A. Teramoto and S. Lifson Science 1995, 268, 1860.

    Article  CAS  Google Scholar 

  57. S.K. Jha, K-S Cheon, M.M Green and J.V. Selinger, J. Am. Chem. Soc. 1999, 121, 1665.

    Article  CAS  Google Scholar 

  58. A Teramoto, Rep. Prog. Polym. Phys. 1998, 41, 25 )

    Google Scholar 

  59. K. Maeda, M. Matsuda, T. Nakano and Y. Okamoto, Polym J. 1995, 27, 141.

    Article  CAS  Google Scholar 

  60. R. D. Miller and R. Sooriyakumaran, Macromolecules, 1988, 21, 3120.

    Article  CAS  Google Scholar 

  61. M.A. Abkowitz, F. E. Knier, H.-J. Yuh, R.J. Weagley and M. Stolka, Solid State Commun. 1987, 62, 547.

    Article  CAS  Google Scholar 

  62. Y. Ohsako, J.R.G. Thorne, C.M. Phillips, R.M. Hochstrasser and J.M. Zeigler, J. Phys. Chem. 1989, 93, 4408.

    Article  CAS  Google Scholar 

  63. A. Fujii, K. Yoshimoto, M. Yoshida, Y. Ohmori and K. Yoshino, Jpn. J. Appl. Phys. 1995, 34, L1365.

    Article  CAS  Google Scholar 

  64. Y. Xu, T. Fujino, H. Naito, K. Oka and T. Dohmaru, Chem. Lett. 1998, 299.

    Google Scholar 

  65. see Matsumoto, Suzuki and Miyazaki chapter).

    Google Scholar 

  66. Even poly(alkyl-aryl)silanes bearing enantiopure chiral sidechains are not necessarily optically active. see H. Nakashima, M. Fujiki and J.R. Koe, Macromolecules, 1999, 32, 7707.

    Google Scholar 

  67. J. Maxka, F.K. Mitter, D.R. Powell and R. West, Organometallics, 1991, 10, 660.

    Article  Google Scholar 

  68. R.G. Jones, R.E. Benfield, P.J. Evance, S.J. Holder and J. A. M. Locke, J. Organomet. Chem. 1996, 521, 171.

    Article  CAS  Google Scholar 

  69. S. Toyoda and M. Fujiki, Chem. Lett. 1999, 699.

    Google Scholar 

  70. H. Stueger, J. Organomet. Chem. 1993, 458, 1.

    Article  CAS  Google Scholar 

  71. L.A. Schwegler, A. Molenberg and M. Moller, Acta Polym 1997, 48, 438.

    Article  CAS  Google Scholar 

  72. C. Wolf and W. H. Pirkle, J. Chromatogr, A 1998, 799, 177.

    Article  CAS  Google Scholar 

  73. I. Abe, K. Terada, T. Nakahara and H. Frank, J. High. Resolut. Chromatogr. 1998, 21, 592.

    Article  CAS  Google Scholar 

  74. B. Gallot, G. Galli, A. Ceecanti and E. Chiellini, Polymer 1999, 40, 2561.

    Article  CAS  Google Scholar 

  75. G.M. Day, H.J. Kim, W.R. Jackson and G.P. Simon, Acta Polym 1999, 50, 96.

    Article  CAS  Google Scholar 

  76. J.C. Milano, J.M. Robert, J.L. Vernet and B. Gallot, Macromol. Chem. Phys. 1999, 200, 180.

    Article  CAS  Google Scholar 

  77. M. Emmelius, G. Pawlowski and H. W. Vollmann, Angew. Chem. Int. Ed. Engl. 1989, 28, 1445.

    Article  Google Scholar 

  78. E.M. Engler, Adv. Mater. 1990, 2, 166

    Article  CAS  Google Scholar 

  79. N.A. Clerk and S. T. Lagerwall, Appl. Phys. Lett. 1980, 36, 899.

    Article  Google Scholar 

  80. G. Moddel, K.M. Johnson. W. Li, R. A. Rice, L. A. Pagano-Stauffer and M. A. Handschy, Appl. Phys. Lett. 1989, 55, 537.

    Article  Google Scholar 

  81. S. Fukushima, T Kurokawa, S. Matsuo and H. Kozawaguchi, Opt. Lett. 1990, 15, 285.

    Article  CAS  Google Scholar 

  82. S. Masatoshi, M. Takeda, S. Fukushima and T. Kurokawa, Appl. Opt. 1998, 37, 7523.

    Article  Google Scholar 

  83. B. L. Fennga, W. F. Jager, B. de Lange and E. W. Meijer, J. Am. Chem. Soc. 1991, 113, 5468.

    Google Scholar 

  84. N. P. M. Huck, W. F. Jager, B. de Lange and B. L. Fernnga, Science, 1996, 273, 1686.

    Article  CAS  Google Scholar 

  85. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn. J. Appl. Phys. 1996, 35, L74.

    Article  CAS  Google Scholar 

  86. F. A. Ponce and D. P. Bour, Nature, 1997, 386, 351.

    Article  CAS  Google Scholar 

  87. E. Peeters, M.P.T. Christiaans, R. A. J. Janssen, H. F. M. Schoo, H. P. J. M. Dekkers and E. W. Meijer. J. Am. Chem. Soc., 1997, 119, 9909.

    Article  CAS  Google Scholar 

  88. C-H. Yuan, S. Hoshino, S. Toyoda, H. Suzuki, M. Fujiki and N. Matsumoto, Appl. Phys. Lett, 1997, 71, 3326, see also Matsumoto, Suzuki and Miyazaki chapter

    Google Scholar 

  89. H. Teramae and K. Takeda, J. Am. Giern. Soc. 1989, 111, 1281.

    Article  CAS  Google Scholar 

  90. Chiral Separations by Liquid Chromatograph, S. Ahuja, ed, ACS, Washington DC, 1991.

    Google Scholar 

  91. B.M.W. Langeveld-Voss, R.A.J. Janssen, M.P.T. Christians, S.C. J. Meskers, H. P. J. M. Dekkers and E. W. Meijer, J. Am. Chem. Soc. 1996, 118, 4908.

    Article  CAS  Google Scholar 

  92. J. Wildeman, J. K. Herrema, G. Hadziioannou and E Schomaker, J. Inorg. Orgamomet. Polym. 1991, 1, 567.

    Article  CAS  Google Scholar 

  93. J. Oshita, D. Kanaya and M. Ishikawa, Appl. Organomet. Chem. 1993, 7, 269.

    Article  Google Scholar 

  94. J. Oshita. D. Kanaya and M. Ishikawa, J. Organomet. Chem. 1994, 468, 55.

    Article  Google Scholar 

  95. C. Moreau. F. Serein-Spirau, C. Biran. M. Bordeau and P. Gerval, Organometallics, 1998, 17, 2797.

    Article  CAS  Google Scholar 

  96. J. Ohshita, A. Yamashita, T. Hiraoka, A. Shinpo and M. Ishikawa, Macromolecules, 1997, 30, 1540.

    Article  CAS  Google Scholar 

  97. F. Garten, A. Hilberer, F. Cacialh, E. Esselink, Y. Van Dam, B. Schlatmann, R.H. Friend, T.M. Klapwijk and G. Hadziioannou, Adv. Mater. 1997, 9, 127.

    Article  CAS  Google Scholar 

  98. M-C. Fang, A. Watanabe and M. Matsuda. J. Organomet. Chem. 1995, 489, 15.

    Article  CAS  Google Scholar 

  99. N. A. J. M. Sommerdijk, S. J. Holder, R. C. Hiorns, R. G. Jones and R.J.M. Nolte, Polym. Mater. Sci. Eng. 1999, 80, 29.

    CAS  Google Scholar 

  100. J.M. Buriak, Chem. Commun. 1999, 1051.

    Google Scholar 

  101. A.G. Cullis, L. T. Canham and P.D.J. Calcott, J. Appl. Phys. 1997, 82, 909.

    Article  CAS  Google Scholar 

  102. M.P. Stewart and J.M. Buriak, Angew. Chem. 1998, 23, 3257.

    Google Scholar 

  103. M.P. Stewart and J.M. Buriak, Angew. Chem. 1998, 23, 3257.

    Google Scholar 

  104. M.P. Stewart and J.M. Buriak, Angew. Chem. 1998, 23, 3257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fujiki, M., Koe, J.R. (2000). Optically Active Silicon-Containing Polymers. In: Jones, R.G., Ando, W., Chojnowski, J. (eds) Silicon-Containing Polymers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3939-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3939-7_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0348-6

  • Online ISBN: 978-94-011-3939-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics