Skip to main content

The cytochrome P450 supergene family: genetic organization and function

  • Chapter
Immunology and Liver

Part of the book series: Falk Symposium ((FASS,volume 114))

  • 123 Accesses

Abstract

At least eight human cytochrome P450s are recognized by autoantibodies associated with either alcoholic liver disease, autoimmune polyendocrinopathy, autoimmune hepatitis or drug-induced autoimmunity (Table 1). The poly specific responses to both conformational and linear epitopes that have been characterized for autoantibodies to P450 2D6 in LKM-1-positive autoimmune hepatitis suggests that the autoimmune response is directed towards the P4501-7. Although the other P450 antigens listed in Table 1 have not yet received the same level of scrutiny, these enzymes nevertheless appear to be relatively specific targets for autoimmune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Durazzo M, Philipp T, Van Pelt FNAM et al. Heterogeneity of liver-kidney microsomal autoantibodies in chronic hepatitis C and D virus infection. Gastroenterology. 1995;108:455–462.

    Article  PubMed  CAS  Google Scholar 

  2. Manns MP, Obermayer-Straub P. Cytochromes P450 and uridine triphosphate-glucuronosyl-transferases: model autoantigens to study drug-induced, virus-induced, and autoimmune liver disease. Hepatology. 1997;26:1054–1066.

    Article  PubMed  CAS  Google Scholar 

  3. Miyakawa H, Matsushima H, Narita Y et al. Differences in antigenic sites, recognized by anti-liver-kidney microsome-1 (LKM-1) autoantibody, between HCV-positive and HCV-negative sera in Japanese patients. J Gastroenterol. 1998;33:529–535.

    Article  PubMed  CAS  Google Scholar 

  4. Parez N, Herzog D, Jacqz-Aigrain E, Homberg JC, Alvarez F. Study of the B cell response to cytochrome P450IID6 in sera from chronic hepatitis C patients. Clin Exp Immunol. 1996;106:336–343.

    Article  PubMed  CAS  Google Scholar 

  5. Duclos-Vallée J-C, Hajoui O, Yamamoto AM, Jacqz-Aigrain E, Alvarez F. Conformational epitopes on CYP2D6 are recognized by liver/kidney microsomal antibodies. Gastroenterology. 1995;108:470–476.

    Article  PubMed  Google Scholar 

  6. Yamamoto AM, Cresteil D, Homberg JC, Alvarez F. Characterization of anti-liver-kidney microsome antibody (anti-LKMl) from hepatitis C virus-positive and-negative sera. Gastroenterology. 1993; 104:1762–1767.

    PubMed  CAS  Google Scholar 

  7. Yamamoto AM, Cresteil D, Boniface O, Clerc FF, Alvarez F. Identification and analysis of cytochrome P450IID6 antigenic sites recognized by anti-liver-kidney microsome type-l antibodies (LKMl). Eur J Immunol. 1993;23:1105–11011.

    Article  PubMed  CAS  Google Scholar 

  8. Nebert DW, Nelson DR, Coon MJ et al. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991;10:1–14.

    Article  PubMed  CAS  Google Scholar 

  9. Nelson DR. Cytochrome P450 and the individuality of species. Arch Biochem Biophys. 1999;369:1–10.

    Article  PubMed  CAS  Google Scholar 

  10. Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem. 1964;239:2370–2378.

    PubMed  CAS  Google Scholar 

  11. Kalb VF, Loper JC. Proteins from eight eukaryotic cytochrome P-450 families share a segmented region of sequence similarity. Proc Natl Acad Sci USA. 1988;85:7221–72215.

    Article  PubMed  CAS  Google Scholar 

  12. Graham SE, Peterson JA. How similar are P450s and what can their differences teach us? Arch Biochem Biophys. 1999;369:24–29.

    Article  PubMed  CAS  Google Scholar 

  13. White RE, Coon MJ. Oxygen activation by cytochrome P-450. Annu Rev Biochem. 1980;49:315–356.

    Article  PubMed  CAS  Google Scholar 

  14. Sakaguchi M, Katsuyoshi M, Sato R. Signal recognition particle is required for co-translational insertion of cytochrome P-450 into microsomal membranes. Proc Natl Acad Sci USA. 1984;81:3361–3364.

    Article  PubMed  CAS  Google Scholar 

  15. Sakaguchi M, Mihara K, Sato R. A short amino-terminal segment of microsomal cytochrome P-450 functions both as an insertion signal and as a stop-transfer sequence. EMBO J. 1987;6:2425–2431.

    PubMed  CAS  Google Scholar 

  16. Szczesna-Skorupa E, Browne N, Mead D, Kemper B. Positive charges at the NH2 terminus convert the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide. Proc Natl Acad Sci USA. 1988;85:738–742.

    Article  PubMed  CAS  Google Scholar 

  17. Monier S, Van Luc P, Kreibich G, Sabatini DD, Adesnik M. Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J Cell Biol. 1988;107:457–470.

    Article  PubMed  CAS  Google Scholar 

  18. Pernecky SJ, Larson JR, Philpot RM, Coon MJ. Expression of truncated forms of liver microsomal P450 cytochromes 2B4 and 2E1 in Escherichia coll.influence of NH2-terminal region on localization in cytosol and membranes. Proc Natl Acad Sci USA. 1993;90:2651–2655.

    Article  PubMed  CAS  Google Scholar 

  19. Von Wachenfeldt C, Richardson TH, Cosme J, Johnson EF. Microsomal P450 2C3 is expressed as a soluble dimer in Escherichia colifollowing modifications of its N-terminus. Arch Biochem Biophys. 1997;339:107–114.

    Article  Google Scholar 

  20. DuBois RN, Simpson ER, Tuckey J, Lambeth JD, Waterman MR. Evidence for a higher molecular weight precursor of cholesterol side-chain-cleavage cytochrome P-450 and induction of mitochondrial and cytosolic proteins by corticotropin in adult bovine adrenal cells. Proc Natl Acad Sci USA. 1981;78:1028–1032.

    Article  PubMed  CAS  Google Scholar 

  21. Ogishima T, Okada Y, Omura T. Import and processing of the precursor of cytochrome P-450(SCC) by bovine adrenal cortex mitochondria. J Biochem. 1985;98:781–791.

    PubMed  CAS  Google Scholar 

  22. Loeper J, Descatoire V, Maurice M et al. Cytochromes P-450 in human hepatocyte plasma membrane: recognition by several autoantibodies. Gastroenterology 1993;104:203–216.

    PubMed  CAS  Google Scholar 

  23. Loeper J, Le Berre A, Pompon D. Topology inversion of CYP2D6 in the endoplasmic reticulum is not required for plasma membrane transport. Mol Pharmacol. 1998;53:408–414.

    PubMed  CAS  Google Scholar 

  24. Yamamoto AM, Mura C, De Lemos-Chiarandini C, Krishnamoorthy R, Alvarez F. Cytochrome P450IID6 recognized by LKM1 antibody is not exposed on the surface of hepatocytes. Clin Exp Immunol. 1993;92:381–390.

    Article  PubMed  CAS  Google Scholar 

  25. Yamamoto AM, Mura C, Morales MG, Bernard O, Krishnamoorthy R, Alvarez F. Study of CYP2D6 gene in children with autoimmune hepatitis and P450 IID6 autoantibodies. Clin Exp Immunol. 1992;87:251–255.

    Article  PubMed  CAS  Google Scholar 

  26. Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science. 1996; 272:227–234.

    Article  PubMed  CAS  Google Scholar 

  27. Szczesna-Skorupa E, Ahn KS, Chen CD, Doray B, Kemper B. The cytoplasmic and N-terminal transmembrane domains of cytochrome P450 contain independent signals for retention in the endoplasmic reticulum. J Biol Chem. 1995;270:24327–24333.

    Article  PubMed  CAS  Google Scholar 

  28. Murakami K, Mihara K, Omura T. The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal. J Biochem (Tokyo). 1994;116:164–175.

    CAS  Google Scholar 

  29. Szczesna-Skorupa E, Kemper B. An N-terminal glycosylation signal on cytochrome P450 is restricted to the endoplasmic reticulum in a luminal orientation. J Biol Chem. 1993;268:1757–1762.

    PubMed  CAS  Google Scholar 

  30. Winqvist O, Karlsson FA, Kämpe O. 21-Hydroxylase, a major autoantigen in idiopathic Addison’s disease. Lancet. 1992;339:1559–1562.

    Article  PubMed  CAS  Google Scholar 

  31. Krohn K, Uibo R, Aavik E, Peterson P, Savilahti K. Identification by molecular cloning of an autoantigen associated with Addison’s disease as steroid 17α-hydroxylase. Lancet. 1992;339:770–773.

    Article  PubMed  CAS  Google Scholar 

  32. Alvares AP, Pratt WB. Pathways of drug metabolism. In: Pratt WB, Taylor P, editors. Principles of Drug Action: The Basis of Pharmacology, 3rd edn. New York: Churchill Livingstone; 1990:365–422.

    Google Scholar 

  33. Gotoh O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem. 1992;267:83–90.

    PubMed  CAS  Google Scholar 

  34. Von Wachenfeldt C, Johnson EF. Structures of eukaryotic cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: Structure, Mechanism, and Biochemistry (2nd edn). New York: Plenum Press; 1995:183–244.

    Google Scholar 

  35. Nebert DW, Gonzalez FJ. P450 genes: structure, evolution, and regulation. Ann Rev Biochem. 1987;56:945–993.

    Article  PubMed  CAS  Google Scholar 

  36. Zanger UM, Hauri H-P, Loeper J, Homberg J-C, Meyer UA. Antibodies against human cytochrome P-450dbl in autoimmune hepatitis type II. Proc Natl Acad Sci USA. 1988;85:8256–8260.

    Article  PubMed  CAS  Google Scholar 

  37. Manns MP, Johnson EF, Griffin KJ, Tan EM, Sulli Van KF. Major antigen of liver kidney microsomal autoantibodies in idiopathic autoimmune hepatitis is cytochrome P450dbl. J Clin Invest. 1989;83:1066–1072.

    Article  PubMed  CAS  Google Scholar 

  38. Gueguen M, Yamamoto AM, Bernard O, Alvarez F. Anti-liver kidney microsome antibody type 1 recognizes human cytochrome P450 dbl. Biochem Biophys Res Commun. 1989;159:542–547.

    Article  PubMed  CAS  Google Scholar 

  39. Caporaso NE, Shaw GL. Clinical inplications of the competitive inhibition of the debrisoquin-metabolizing isozyme by quinidine. Arch Intern Med. 1991;151:1985–1992.

    Article  PubMed  CAS  Google Scholar 

  40. Boobis AR, Fawthrop DJ, Davies DS. Mechanisms of cell death. TIPS. 1989;10:275–280.

    PubMed  CAS  Google Scholar 

  41. Clot P, Albano E, Eliasson E et al. Cytochrome P450 2E1 hydroxyethyl radical adducts as the major antigen in autoantibody formation among alcoholics. Gastroenterology. 1996;111:206–216.

    Article  PubMed  CAS  Google Scholar 

  42. Clot P, Bellomo G, Tabone M, Arico S, Albano E. Detection of antibodies against proteins modified by hydroxyethyl free radicals in patients with alcoholic cirrhosis. Gastroenterology. 1995; 108:201–207.

    Article  PubMed  CAS  Google Scholar 

  43. Ghanayem BI, Sanders JM, Chanas B, Burka LT, Gonzalez FJ. Role of cytochrome P-450 2E1 in methacrylonitrile metabolism and disposition. J Pharmacol Exp Ther. 1999;289:1054–1059.

    PubMed  CAS  Google Scholar 

  44. Bondoc FY, Bao Z, Hu WY et al. Acetone catabolism by cytochrome P450 2E1: studies with CYP2El-null mice. Biochem.Pharmacol. 1999;58:461–463.

    Article  PubMed  CAS  Google Scholar 

  45. Miller EC. Some current perspectives on chemical carcinogenesis in humans and experimental animals: presidential address. Cancer Res. 1978;38:1479–1496.

    PubMed  CAS  Google Scholar 

  46. Heidelberger C. Chemical carcinogenesis. Annu Rev Biochem. 1975;44:79–121.

    Article  PubMed  CAS  Google Scholar 

  47. Wattenberg LW. Inhibitors of chemical carcinogenesis. Adv Cancer Res. 1978;26:197–226.

    Article  PubMed  CAS  Google Scholar 

  48. Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G.H.A. Clowes Memorial Lecture. Cancer Res. 1982;42:4875–4917.

    PubMed  CAS  Google Scholar 

  49. Guengerich FP. Metabolic activation of carcinogens. Pharmacol Ther. 1992;54:17–61.

    Article  PubMed  CAS  Google Scholar 

  50. McManus ME, Minchin RF, Sanderson N, Schwartz D, Johnson EF, Thorgeirsson SS. Metabolic processing of 2-acetylaminofluorene by microsomes and six highly purified cytochrome P-450 forms from rabbit liver. Carcinogenesis. 1984;5:1717–1723.

    Article  PubMed  CAS  Google Scholar 

  51. Gillette JR. Activation systems-characteristics and drawbacks-comparisons of different organs, tissues, problems with toxication-detoxication balance in various tissues, extrapolation from in vitroto in vivo.Pharmacokinetics, absorption, distribution, excretion, metabolism. In: de Serres FJ, Fouts JR, Bend JR, Philpot RM, editors. In Vitro Metabolic Activation in Mutagenesis Testing. Amsterdam: Elsevier North Holland; 1976:13–54.

    Google Scholar 

  52. Hardwick JP, Gonzalez FJ, Kasper CB. Transcriptional regulation of rat liver epoxide hydratase, NADPH-cytochrome P-450 oxidoreductase, and cytochrome P-450b genes by phenobarbital. J Biol Chem. 1983;258:8081–8085.

    PubMed  CAS  Google Scholar 

  53. Pike SF, Shephard EA, Rabin BR, Phillips IR. Induction of cytochrome P-450 by phenobarbital is mediated at the level of transcription. Biochem Pharmacol. 1985;34:2489–2494.

    Article  PubMed  CAS  Google Scholar 

  54. Israel DI, Whitlock Jr JP. Regulation cytochrome Pl-450 gene transcription by 2,3,7,8-tetra-chlorodibenzo-p-dioxin in wild type and variant mouse hepatoma cells. J Biol Chem. 1984;259:5400–5402.

    PubMed  CAS  Google Scholar 

  55. Gonzalez FJ, Tukey RH, Nebert DW. Structural gene products of the Ah locus. Transcriptional regulation of cytochrome Pl-450 and P3-450 mRNA levels by 3-methylcholanthrene. Mol Pharmacol. 1984;26:117–121.

    PubMed  CAS  Google Scholar 

  56. Simmons DL, McQuiddy P, Kasper CB. Induction of the hepatic mixed-function oxidase system by synthetic glucocorticoids. J Biol Chem. 1987;262:326–332.

    PubMed  CAS  Google Scholar 

  57. Potenza CL, Pendurthi UR, Strom DK et al. Regulation of the rabbit cytochrome P-450 3c gene: age dependent expression and transcriptional activation by rifampicin. J Biol Chem. 1989;264:16222–16228.

    PubMed  CAS  Google Scholar 

  58. Hardwick JP, Song B-J, Huberman E, Gonzalez FJ. Isolation, complementary DNA sequence, and regulation of rat hepatic lauric acid omega-hydroxylase (cytochrome P-450LAomega). J Biol Chem. 1987;262:801–810.

    PubMed  CAS  Google Scholar 

  59. Song B-J, Gelboin HV, Park S-S, Yang CS, Gonzalez FJ. Complementary DNA and protein sequences of ethanol-inducible rat and human cytochrome P-450s. J Biol Chem. 1986;261:16689–16697.

    PubMed  CAS  Google Scholar 

  60. Porter TD, Khani SC, Coon MJ. Induction and tissue-specific expression of rabbit cytochrome P450IIE1 and IIE2 genes. Mol Pharmacol. 1989;36:61–65.

    PubMed  CAS  Google Scholar 

  61. Song BJ, Matsunaga T, Hardwick JP et al. Stabilization of cytochrome P450j messenger ribonucleic acid in the diabetic rat. Mol Endocrinol. 1987;1:542–547.

    Article  PubMed  CAS  Google Scholar 

  62. Watkins PB, Wrighton SA, Schuetz EG, Maurel P, Guzelian PS. Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P-450p in rat hepatocytes in vivoand in primary monolayer culture. J Biol Chem. 1986;261:6264–6271.

    PubMed  CAS  Google Scholar 

  63. Combalbert J, Fabre I, Fabre G et al. Metabolism of cyclosporin A. IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab Dispos. 1989;17:197–207.

    PubMed  CAS  Google Scholar 

  64. Ged C, Rouillon JM, Pichard L et al. The increase in urinary excretion of 6β-hydroxycortisol as a marker of human hepatic cytochrome P450IIIA induction. Br J Clin Pharmacol. 1989;28:373–387.

    Article  PubMed  CAS  Google Scholar 

  65. Lange R, Larroque C, Balny C, Maurel P. Isolation and partial characterization of a rifampicin induced rabbit liver microsomal cytochrome P-450. Biochem Biophys Res Commun. 1985;126:833–839.

    Article  PubMed  CAS  Google Scholar 

  66. Wrighton SA, Schuetz EG, Watkins PB et al. Demonstration in multiple species of inducible hepatic cytochromes P-450 and their mRNAs related to the glucocorticoid-inducible cytochrome P-450 of the rat. Mol Pharmacol. 1985;28:312–321.

    PubMed  CAS  Google Scholar 

  67. Kliewer SA, Moore JT, Wade L et al An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell. 1998;92:73–82.

    Article  PubMed  CAS  Google Scholar 

  68. Blumberg B, Sabbagh WJ, Juguilon H et al. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev. 1998;12:3195–3205.

    Article  PubMed  CAS  Google Scholar 

  69. Bertilsson G, Heidrich J, Svensson K et al. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci USA. 1998;95:12208–12213.

    Article  PubMed  CAS  Google Scholar 

  70. Savas ü, Griffin KJ, Johnson EF. Molecular mechanisms of cytochrome P-450 induction by xenobiotics: an expanded role for nuclear receptors. Mol Pharmacol. 1999;56:851–887.

    PubMed  CAS  Google Scholar 

  71. Savas U, Wester MR, Griffin KJ, Johnson EF. The rabbit pregnane X receptor is activated by rifampicin. Drug Metab Dispos. 2000;28:529–537.

    PubMed  CAS  Google Scholar 

  72. Zhang H, LeCulyse E, Liu L et al. Rat pregnane X receptor: molecular cloning, tissue distribution, and xenobiotic regulation. Arch Biochem Biophys. 1999;368:14–22.

    Article  PubMed  CAS  Google Scholar 

  73. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347:645–650.

    Article  PubMed  CAS  Google Scholar 

  74. Muerhoff AS, Griffin KJ, Johnson EF. The peroxisome proliferator activated receptor mediates the induction of CYP4A6, a cytochrome P450 fatty acid omega-hydroxylase, by clofibric acid. J Biol Chem. 1992;267:19051–19053.

    PubMed  CAS  Google Scholar 

  75. Kawamoto T, Sueyoshi T, Zelko I, Moore R, Washburn K, Negishi M. Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol Cell Biol. 1999;19:6318–6322.

    PubMed  CAS  Google Scholar 

  76. Hoffman EC, Reyes H, Chu F-F et al Cloning of a factor required for activity of the Ah (dioxin) receptor. Science. 1991;252:954–958.

    Article  PubMed  CAS  Google Scholar 

  77. Reyes H, Reisz-Porszasz S, Hankinson O. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science. 1992;256:1193–1195.

    Article  PubMed  CAS  Google Scholar 

  78. Ema M, Sogawa K, Watanabe N et al cDNA cloning and structure of mouse putative Ah receptor. Biochem Biophys Res Commun. 1992;184:246–253.

    Article  PubMed  CAS  Google Scholar 

  79. Burbach KM, Poland A, Bradfield CA. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci USA. 1992;89:8185–8189.

    Article  PubMed  CAS  Google Scholar 

  80. Manns MP, Griffin KJ, Quattrochi LC et al Identification of cytochrome P450IA2 as a human autoantigen. Arch Biochem Biophys. 1990;280:229–232.

    Article  PubMed  CAS  Google Scholar 

  81. Clemente MG, Meloni A, Obermayer-Straub P, Frau F, Manns MP, De Virgiliis S. Two cytochromes P450 are major hepatocellular autoantigens in autoimmune polyglandular syndrome type 1. Gastroenterology. 1998;114:324–328.

    Article  PubMed  CAS  Google Scholar 

  82. Bourdi M, Gautier J-C, Mircheva J et al Anti-liver microsomes autoantibodies and dihydralazine-induced hepatitis: Specificity of autoantibodies and inductive capacity of the drug. Mol Pharmacol. 1992;42:280–285.

    PubMed  CAS  Google Scholar 

  83. Bourdi M, Tinel M, Beaune PH, Pessayre D. Interactions of dihydralazine with cytochromes P4501A: a possible explanation for the appearance of anti-cytochrome P4501A2 autoantibodies. Mol Pharmacol. 1994;45:1287–1295.

    PubMed  CAS  Google Scholar 

  84. Eliasson E, Stal P, Oksanen A, Lytton S. Expression of autoantibodies to specific cytochromes P450 in a case of disulfiram hepatitis. J Hepatol. 1998;29:819–825.

    Article  PubMed  CAS  Google Scholar 

  85. Beaune P, Dansette PM, Mansuy D et al Human anti-endoplasmic reticulum autoantibodies appearing in a drug-induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug. Proc Natl Acad Sci USA 1987;84:551–555.

    Article  PubMed  CAS  Google Scholar 

  86. Lecoeur S, André C, Beaune PH. Tienilic acid-induced autoimmune hepatitis: anti-liver and-kidney microsomal type 2 autoantibodies recognize a three-site conformational epitope on cytochrome P4502C9. Mol Pharmacol. 1996;50:326–333.

    PubMed  CAS  Google Scholar 

  87. Philipp T, Straub P, Durazzo M, Tukey RH, Manns MP. Molecular analysis of autoantigens in hepatitis D. J Hepatol. 1995;22Suppl.1:132–135.

    PubMed  CAS  Google Scholar 

  88. Abuaf N, Johanet C, Chretien P et al Characterization of the liver cytosol antigen type 1 reacting with autoantibodies in chronic active hepatitis. Hepatology. 1992;16:892–898.

    Article  PubMed  CAS  Google Scholar 

  89. Lunel F, Abuaf N, Frangeul L et al Liver/kidney microsome antibody type 1 and hepatitis C virus infection. Hepatology. 1992;16:630–636.

    Article  PubMed  CAS  Google Scholar 

  90. Manns MR Viruses and autoimmune liver disease. Intervirology. 1993;35:108–115.

    PubMed  CAS  Google Scholar 

  91. Riley RJ, Smith G, Wolf CR, Cook VA, Leeder JS. Human anti-endoplasmic reticulum autoantibodies produced in aromatic anticonvulsant hypersensitivity reactions recognise rodent CYP3A proteins and a similarly regulated human P450 enzyme(s). Biochem Biophys Res Commun. 1993;191:32–40.

    Article  PubMed  CAS  Google Scholar 

  92. Leeder JS, Riley RJ, Cook VA, Spielberg SP. Human anti-cytochrome P450 antibodies in aromatic anticonvulsant-induced hypersensitivity reactions. J Pharmacol Exp Ther. 1992;263:360–367.

    PubMed  CAS  Google Scholar 

  93. Uibo R, Aavik E, Peterson P et al Autoantibodies to cytochrome P450 enzymes P450scc, P450cl7, and P450c21 in autoimmune polyglandular disease types I and II and in isolated Addison’s disease. J.Clin Endocrinol Metab. 1994;78:323–328.

    Article  PubMed  CAS  Google Scholar 

  94. Winqvist O, Gustafsson J, Rorsman F, Karlsson FA, Kämpe O. Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison’s disease. J Clin Invest. 1993;92:2377–2385.

    Article  PubMed  CAS  Google Scholar 

  95. Williams PA, Cosme J, Sridher V, Johnson EF, Mc ReeDE. The crystallographic structure of a mammalian microsomal cytochrome P450 monooxygenase: Structural adaptations for membrane binding and functional diversity. Mol Cell. 2000;5:121–132.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Griffin, K.J., Johnson, E.F. (2000). The cytochrome P450 supergene family: genetic organization and function. In: Manns, M.P., Paumgartner, G., Leuschner, U. (eds) Immunology and Liver. Falk Symposium, vol 114. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4000-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4000-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5768-4

  • Online ISBN: 978-94-011-4000-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics