Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 74))

  • 158 Accesses

Abstract

Control analysis has been applied experimentally to many pathways (Fell, 1992). However, the effort required to measure the elasticity, control and response coefficients makes a full empirical analysis unrealistic in all but rather simple systems. Consequently, most investigations have considered single enzymes or pathways, ignoring interactions with other cellular pathways. The most experimentally accessible way to measure regulation in complex systems like whole cells is to group reactions together into much larger blocks. The control and regulation of a simplified network of blocks that includes all the reactions in the cell can then be analysed. This is known as the top-down (Brand, 1996) or modular (Schuster et al., 1993) approach to control analysis. Top-down approaches have been used either to analyse the reactions in whole cells or organs around a single intermediate (Brand, 1996; Soboll et al., 1998) or to analyse a limited number of reactions around several intermediates (Groen et al., 1982; Kashiwaya et al., 1994). There has been no analysis of the grouped reactions of a whole cell with multiple intermediates. Such an analysis is necessary if we are to quantify and understand the importance of interactions between different major pathways in the cell, because it is only when we include all of the reactions that the full complexity appears. A great strength of control analysis is that it provides the methodology and language to describe this complexity meaningfully.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainscow, E. K. & Brand, M. D. (1998a) Control analysis of systems with reaction blocks that “cross-talk”Biochim. Biophys. Acta 1366284–290

    Article  CAS  Google Scholar 

  • Ainscow, E. K. & Brand, M. D. (1998b) Errors associated with metabolic control analysis: application of Monte-Carlo simulation of experimental dataJ. Theor. Biol. 194223–233

    Article  CAS  Google Scholar 

  • Ainscow, E. K. & Brand, M. D. (1998c) Quantifying elasticity analysis: how external effectors cause changes to metabolic systemsBioSystems 49151–159

    Article  Google Scholar 

  • Ainscow, E. K. & Brand, M. D. (1999a) Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytesEur. J. Biochem. 263671–685

    Article  CAS  Google Scholar 

  • Ainscow, E. K. & Brand, M. D. (1999b) Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytesEur. J. Biochem.in press

    Google Scholar 

  • Ainscow, E. K. & Brand, M. D. (1999c) The responses of hepatocytes to glucagon and adrenaline: application of quantified elasticity analysisEur. J. Biochem.in press

    Google Scholar 

  • Brand, M. D. (1996) Top down metabolic control analysisJ. Theor. Biol. 182351–360

    Article  PubMed  CAS  Google Scholar 

  • Brand, M. D. (1997) Regulation analysis of energy metabolism, J.Exp. Biol. 200193–202

    PubMed  CAS  Google Scholar 

  • Brand, M. D. (1998) Top-down elasticity analysis and its application to energy metabolism in isolated mitochondria and intact cellsMol. Cell. Biochem. 18413–20

    Article  PubMed  CAS  Google Scholar 

  • Brown, G. C. (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cellsBiochem. J. 2841–13

    PubMed  CAS  Google Scholar 

  • Buttgereit, F. & Brand, M. D. (1995) A hierarchy of ATP-consuming processes in mammalian cellsBiochem. J. 312 163–167

    PubMed  CAS  Google Scholar 

  • Fell, D. A. (1992) Metabolic control analysis, a survey of its theoretical and experimental developmentBiochem. J. 286313–330

    PubMed  CAS  Google Scholar 

  • Fell, D. A. & Thomas, S. (1995) Physiological control of metabolic flux: the requirement for multi-site modulationBiochem. J. 31135–39

    PubMed  CAS  Google Scholar 

  • Giersch, C. (1994) Determining elasticities from multiple measurements of steady state flux rates and metabolite concentrations: theoryJ. Theor. Biol. 16988–99

    Article  Google Scholar 

  • Groen, A. K., Vervoorn, R. C., Van der Meer, R. & Tager, J. M. (1982) Control of gluconeogenesis: kinetics of the individual enzymes and the effect of glucagonJ. Biol. Chem. 25814346–14353

    Google Scholar 

  • Hofmeyr, J.-H. S., Cornish-Bowden, A. & Rohwer, J. M. (1993) Taking enzyme kinetics out of control; putting control into regulationEur. J. Biochem. 212833–837

    Article  PubMed  CAS  Google Scholar 

  • Holzhütter, H.-G., Jacobasch, G. & Bisdorff, A (1985) Mathematical modelling of metabolic pathways affected by an enzyme deficiency. A mathematical model of glycolysis in normal and pyruvate-kinase-deficient red blood cellsEur. J. Biochem. 149101—111

    Article  PubMed  Google Scholar 

  • Kahn, D. & Westerhoff, H. V. (1993) The regulatory strength: how to be precise about regulation and homeostasisActa Biotheor. 4185–96

    Article  PubMed  CAS  Google Scholar 

  • Kashiwaya, Y., Sato, K., Tsuchiya, N., Thomas, S.etal. (1994) Control of glucose utilization in working perfused rat heartJ. Biol. Chem. 26925502–25514

    PubMed  CAS  Google Scholar 

  • Kesseler, A. & Brand, M. D. (1994) Quantitative determination of the regulation of oxidative phosphorylation by cadmium in potato tuber mitochondriaEur. J. Biochem.225923–935

    Article  PubMed  CAS  Google Scholar 

  • Kholodenko, B. N. (1988) How do external parameters control fluxes and concentrations of metabolites?FEBS Lett. 232383–386

    Article  PubMed  CAS  Google Scholar 

  • Reder, C. (1988) Metabolic control theory: a structural approachJ. Theor. Biol.135175–201

    Article  PubMed  CAS  Google Scholar 

  • Rohwer, J. M., Schuster, S. & Westerhoff, H. V. (1996) How to recognise monofunctional units in a metabolic systemJ. Theor. Biol. 179213–228

    Article  PubMed  CAS  Google Scholar 

  • Schuster, S., Kahn, D. & Westerhoff, H. V. (1993) Modular analysis of the control of complex metabolic pathwaysBiophys. Chem.481–17

    Article  PubMed  CAS  Google Scholar 

  • Soboll, S., Oh, M.-H. & Brown, G. C. (1998) Control of oxidative phosphorylation, gluconeogenesis, ureagenesis and ATP turnover in isolated perfused rat liver analysed by top-down metabolic control analysisEur. J. Biochem.254194–201

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brand, M.D., Ainscow, E.K. (2000). Regulation of Energy Metabolism in Hepatocytes. In: Cornish-Bowden, A., Cárdenas, M.L. (eds) Technological and Medical Implications of Metabolic Control Analysis. NATO Science Series, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4072-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4072-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6189-3

  • Online ISBN: 978-94-011-4072-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics