Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 549))

Abstract

In the first part of this review paper, the time-dependent Ginzburg-Landau theory is derived starting from the microscopic BCS model with the help of a derivative expansion. Special attention is paid to two space dimensions, where the entire crossover from the weak-coupling BCS limit to the strong-coupling BEC limit of tightly bound fermion pairs is accessible analytically. The second part deals with the dual approach to the time-independent Ginzburg-Landau theory in three space dimensions. In this approach, the magnetic vortices of a superconductor play the central role, and the superconductor-to-normal phase transition is understood as a proliferation of these vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berezinskii, V.L. (1972) Destruction of Long-Range Order Sov. Phys. JETP 34, pp. 610–616

    ADS  Google Scholar 

  2. Kosterlitz, J.M. and Thouless, D. J. (1973) Metastability and Phase Transitions in Two-Dimensional Systems J. Phys. C 6, pp. 1181–1203

    Article  ADS  Google Scholar 

  3. Davis, A.-C. and Brandenberger, R. (Eds.) (1995) Formation and Interactions of Topological Defects Plenum Press, New York

    Google Scholar 

  4. Gorkov, L.P. (1959) Microscopic Derivation of the Ginzburg-Landau Equations in the Theory of Superconductivity Sov. Phys. JETP 9 pp. 1364–1367

    MathSciNet  Google Scholar 

  5. Bardeen, J., Cooper, L. N. and Schrieffer, J. R. (1957) Theory of Superconductivity Phys. Rev. 108 pp. 1175–1204

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Ginzburg, V.L. and Landau, L.D. (1950) Zh. Eksp. Teor. Fiz. 20 pp. 1064

    Google Scholar 

  7. Schakel, A.M.J. (1989) On Broken Symmetries in Fermi Systems, Ph. D. Thesis, University of Amsterdam

    Google Scholar 

  8. Eagles, D.M. (1969) Possible Pairing without Superconductivity at Low Carrier Concentrations in Bulk and Thin-Film Superconducting Semiconductors Phys. Rev. 186 pp. 456–463

    Article  ADS  Google Scholar 

  9. Leggett, A.J. (1980) in: Pekalski, A. and Przystawa, J. (Eds.) Modern Trends in the Theory of Condensed Matter Springer-Verlag, Berlin pp. 13–27

    Chapter  Google Scholar 

  10. Drechsler, M. and Zwerger, W. (1992) Crossover from BCS-Superconductivity to Bose-Condensation Ann. Phys. (Germany) 1 pp. 15–23

    Article  Google Scholar 

  11. Haussmann, R. (1993) Crossover from BCS Superconductivity to Bose-Einstein Condensation—A Self-Consistent Theory Z. Phys. B 91 pp. 291–308

    Article  ADS  Google Scholar 

  12. Sá de Melo, C.A.R., Randeria, M. and Engelbrecht, J.R. (1993) Crossover from BCS to Bose Superconductivity—Transition-Temperature and Time-Dependent Ginzburg-Landau Theory Phys. Rev. Lett. 71 pp. 3202–3205

    Article  ADS  Google Scholar 

  13. Marini, M., Pistolesi, F. and Strinati, G.C. (1998) Evolution from BCS Superconductivity to Bose Condensation: Analytic Results for the Crossover in Three Dimensions Eur. Phys. J. B 1 pp. 151–159

    Google Scholar 

  14. Popov, V.N. (1987) Functional Integrals and Collective Excitations Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Randeria, M. Duan, J.-M. and Shieh L.-Y. (1990) Superconductivity in a Two-Dimensional Fermi Gas: Evolution from Cooper Pairing to Bose Condensation Phys. Rev. B 41 pp. 327–343

    Article  ADS  Google Scholar 

  16. Mattuck, R.D. (1976) A Guide to Feynman Diagrams in the Many-Body Problem McGraw-Hill, New York

    Google Scholar 

  17. Fraser, C.M. (1985) Calculation of Higher Derivative Terms in the One Loop Effective Lagrangian Z. Phys. C 28 pp. 101-106; Aitchison, U.R. and Fraser, C.M. (1985) Derivative Expansions of Fermion Determinants: Anomaly-Induced Vertices, Goldstone-Wilczek Currents, and Skyrme Terms Phys. Rev. D 31 pp. 2605–2615

    Google Scholar 

  18. Rivers, R.J (1987) Path Integrals in Quantum Field Theory Cambridge University Press, Cambridge

    Book  Google Scholar 

  19. Kapusta, J.I. (1989) Finite-Temperature Field Theory Cambridge University Press, Cambridge

    MATH  Google Scholar 

  20. Stintzing, S. and Zwerger, W. (1997) Ginzburg-Landau Theory of Superconductors with Short Coherence Length Phys. Rev. B 56 pp. 9004–9014

    Google Scholar 

  21. Schmid, A. (1966) A Time-Dependent Ginzburg-Landau Equation and its Applications to the Problem of Resistivity in the Mixed State Phys. Kond. Materie 5 pp. 302–317

    Google Scholar 

  22. Abrahams, E. and Tsuneto, T. (1966) Time Variation of the Ginzburg-Landau Order Parameter Phys. Rev. 152 pp. 416–432

    Article  ADS  Google Scholar 

  23. Schakel, A.M.J. (1994) Effective Theory of Bosonic Superfluids Int. J. Mod. Phys. B 8 pp. 2021–2039

    Article  ADS  Google Scholar 

  24. de Germes, P.G. (1966) Superconductivity in Metals and Alloys Benjamin, New York

    Google Scholar 

  25. Tinkham, M. (1975) Introduction to Superconductivity McGraw-Hill, New York

    Google Scholar 

  26. Crisan, M. (1989) Theory of Superconductivity World Scientific, Singapore

    Google Scholar 

  27. Gross, E.P. (1961) Structure of a Quantized Vortex in Boson Systems Nuovo Cimento 20pp. 454-477; Pitaevskii, L.P. (1961) Vortex Lines in an Imperfect Bose Gas Sov. Phys. JETP 13 pp. 451–454

    Google Scholar 

  28. Schakel, A.M.J. (1999) in: Shopova, D.V. and Uzunov, D.I. (Eds.) Correlations, Coherence, and Order Plenum Press, New York pp. 295–382

    Chapter  Google Scholar 

  29. Banks, T. Meyerson, B. and Kogut, J. (1977) Phase Transitions in Abelian Lattice Gauge Theories Nucl. Phys. B 129 pp. 493–510

    Article  ADS  Google Scholar 

  30. Peskin, M. (1978) Mandelstam-’t Hooft Duality in Abelian Lattice Models Ann. Phys. 113 pp. 122–152

    Article  ADS  Google Scholar 

  31. Thomas, P.R. and Stone, M. Nature of the Phase Transition in a Nonlinear O(2)3 Model (1978) Nucl. Phys. B 144 pp. 513–524

    Google Scholar 

  32. Helfrich, W. and Müller, W. (1980) Concentrated Thermally Equilibrated Polymer Solutions in: Continuum Models of Discrete Systems Waterloo University Press, Waterloo pp. 753–760

    Google Scholar 

  33. Dasgupta, C. and Halperin, B. I. (1981) Phase Transition in a Lattice Model of Superconductivity Phys. Rev. Lett. 47 pp. 1556–1560

    Article  ADS  Google Scholar 

  34. Kleinert, H. (1982) Disorder Version of the Abelian Higgs Model and the Order of the Superconductive Phase Transition Lett. Nuovo Cimento 35 pp. 405–412

    Article  MathSciNet  Google Scholar 

  35. Bartholomew, J. (1983) Phase Structure of a Lattice Superconductor Phys. Rev. B 28 pp. 5378–5381

    Article  ADS  Google Scholar 

  36. Savit, R. (1989) Duality in Field Theory and Statistical Systems Rev. Mod. Phys. 52 pp. 453–487

    Article  MathSciNet  ADS  Google Scholar 

  37. Kleinert, H. (1989) Gauge Fields in Condensed Matter, 1, World Scientific, Singapore

    MATH  Google Scholar 

  38. Schakel, A.M.J. (1998) Boulevard of Broken Symmetries, e-print cond-mat/9805152

    Google Scholar 

  39. Symanzik, K. (1969) in: Jost, R. (Ed.) Euclidean Quantum Field Theory Academic Press, New York

    Google Scholar 

  40. Feynman, R.P. (1950) Mathematical Formulation of the Quantum Theory of Eletromagnetic Interactions Phys. Rev. 80 pp. 440–457

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Schwinger, J. (1951) On Gauge Invariance and Vacuum Polarization Phys. Rev. 82 pp. 664–679

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Kleinert, H. (1995) Path Integrals in Quantum Mechanics, Statistics and Polymer Physics, 2nd Edition, World Scientific, Singapore

    MATH  Google Scholar 

  43. Feynman, R.P. (1948) Space-Time Approach to Non-Relativistic Quantum Mechanics Rev. Mod. Phys. 20 pp. 367–387

    Article  MathSciNet  ADS  Google Scholar 

  44. Parisi, G. (1988) Statistical Field Theory Addison-Wesley, New-York

    MATH  Google Scholar 

  45. Copeland, E., Haws, D., Holbraad, S. and Rivers, R. (1990) The Statistical Properties of Strings. 1. Free Strings in: Gibbons, G.W., Hawking, S.W. and Vachaspati, T. (Eds.) The Formation and Evolution of Cosmic Strings Cambridge University Press, Cambridge pp. 35–47; The Statistical Properties of Strings. 2. Interacting Strings ibid pp. 49-69

    Google Scholar 

  46. Kiometzis, M., Kleinert, H. and Schakel, A.M.J. (1995) Dual Description of the Superconducting Phase Transition Fortschr. Phys. 43 pp. 697–732

    Google Scholar 

  47. Dirac, P.A.M. (1948) The Theory of Magnetic Poles Phys. Rev. 74 pp. 817–830

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Nambu, Y. (1974) Strings, Monopoles and Gauge Fields Phys. Rev. D 10 pp. 4262–4268

    Article  ADS  Google Scholar 

  49. Abrikosov, A.A. (1957) On the Magnetic Properties of Superconductors of the Second Group Sov. Phys. JETP 5 pp. 1174–1182

    Google Scholar 

  50. Marino, E.C. (1988) Quantum Theory of Nonlocal Vortex Fields Phys. Rev. D 38 pp. 3194–3198 (1988); Marino, E.C., Marques, G.C., Ramos, R.O. and Ruiz, J.S. (1992) Mass Spectrum and Correlation Function of Quantum Vortices in the Abelian Higgs Model Phys. Rev. D 45 pp. 3690-3700; Marino, E.C. (1993) Duality, Quantum Vortices and Anyons in Maxwell-Chern-Simons-Higgs Theories Ann. Phys. (NY) 224 pp. 225-274

    Article  MathSciNet  ADS  Google Scholar 

  51. Kovner, A., Rosenstein, B. and Eliezer, D. (1990) Photon as Goldstone Boson in (2+l)-Dimensional Higgs Model Mod. Phys. Lett. A 5 pp. 2733–2740; (1991) Photon as a Goldstone Boson in (2+l)-Dimensional Abelian Gauge Theories Nucl Phys. B 350 pp. 325-354; Kovner, A. and Rosenstein, B. (1991) Topological Interpretation of Electric Charge and the Aharonov-Bohm Effect in 2+1 Dimensions Phys. Rev. Lett. 67 pp. 1490-1493

    Article  ADS  Google Scholar 

  52. Kiometzis, M. and Schakel, A.M.J. (1993) Landau Description of the Superconducting Phase-Transition Int. J. Mod. Phys. B 7 pp. 4271–4288

    Article  ADS  Google Scholar 

  53. Bardakci, K. and Samuel, S. (1978) Local Field Theory for Solitons Phys. Rev. D 18 pp. 2849–2860

    Article  MathSciNet  ADS  Google Scholar 

  54. Kawai, H. (1981) A Dual Transformation of the Nielsen-Olesen Model Prog. Theor. Phys. 65 pp. 351–364

    Article  ADS  MATH  Google Scholar 

  55. Kovner, A., Kurzepa, P. and Rosenstein, B. (1993) A Candidate for Exact Continuum Dual Theory for Scalar QED3 Mod. Phys. Lett. A. 8 pp. 1343–1355

    Article  ADS  Google Scholar 

  56. Kiometzis, M., Kleinert, H. and Schakel, A.M.J. (1994) Critical Exponents of the Superconducting Phase-Transition Phys. Rev. Lett. 73 pp. 1975–1977

    Article  ADS  Google Scholar 

  57. Herbut, I.F. (1996) Continuum Dual Theory of the Transition in 3D Lattice Superconductor J. Phys. A: Math. Gen. 29 pp. 423–429

    Google Scholar 

  58. de Calan, C. and Nogueira, F.S. (1999) e-print cond-mat/9903247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schakel, A.M.J. (2000). Time-Dependent Ginzburg-Landau Theory and Duality. In: Bunkov, Y.M., Godfrin, H. (eds) Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions. NATO Science Series, vol 549. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4106-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4106-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6205-0

  • Online ISBN: 978-94-011-4106-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics