Skip to main content

Use of the polymerase chain reaction and denaturing gradient gel electrophoresis to study diversity in natural virus communities

  • Chapter
Molecular Ecology of Aquatic Communities

Part of the book series: Developments in Hydrobiology ((DIHY,volume 138))

Abstract

Viruses are abundant members of marine and freshwater microbial communities, and are important players in aquatic ecology and geochemical cycles. Recent methodological developments have allowed the use of the polymerase chain reaction (PCR) to examine the diversity of natural communities of viruses without the need for culture. DNA polymerase genes are highly conserved and are, therefore, suitable targets for PCR analysis of microbes that do not encode rRNA. As natural virus communities are largely made up of dsDNA viruses, and as many dsDNA algal viruses encode their own DNA polymerase, PCR primers can be designed to amplify fragments of these genes. This approach has been used to examine the genetic diversity in natural communities of viruses that infect phytoplankton. Algal-virus-specific primers were used to amplify polymerase fragments from natural virus samples, demonstrating the presence of a diverse community of viruses closely related to those that are known to infect phytoplankton. We have modified this approach by using denaturing gradient gel electrophoresis (DGGE) to rapidly analyze PCR products. DGGE will permit rapid and efficient fingerprinting of natural marine viral communities, and allow spatial and temporal differences in viral community structure to be examined. This paper provides a brief overview of how PCR and DGGE can be used to examine diversity in natural viral communities drawing on viruses that infect phytoplankton as an example.

Author for correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argos, P., A. D. Tucker, L. Philipson (1986). Primary structural relationships may reflect similar DNA replication strategies. Virology 149: 208–

    Article  PubMed  CAS  Google Scholar 

  • Argos, P. (1988). A sequence motif in many polymerases. Nucl. Acids Res. 16(21): 9909–9916.

    Article  PubMed  CAS  Google Scholar 

  • Bej, A. K., R. J. Steffan, J. DiCesare, L. Haff, R. M. Atlas (1990). Detection of coliform bacteria in water by polymerase chain reaction and gene probes. Appl. envir. Microbiol. 56: 307–314.

    CAS  Google Scholar 

  • Bergh, O., K. Y. Borsheim, G. Bratbak, M. Heldal (1989). High abundance of viruses found in aquatic environments. Nature 340: 467–468.

    Article  PubMed  CAS  Google Scholar 

  • BØrsheim, K. Y., G. Bratbak, M. Heldal (1990). Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl. envir. Microbiol. 56(2): 352–356.

    Google Scholar 

  • Braithwaite, D. K., J. Ito (1993). Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucl. Acids Res. 21(4): 787–802.

    Article  PubMed  CAS  Google Scholar 

  • Bratbak, G., F. Thingstad, M. Heldal (1994). Viruses and the microbial loop. Microb. Ecol. 28: 209–221.

    Article  Google Scholar 

  • Brown R. M., Jr. (1972). Algal viruses. Advances in Virus Res. 17: 243–277.

    Article  Google Scholar 

  • Calisher, C. H., M. C. Horzinek, M. A. Mayo, H.-W. Ackermann, J. Maniloff. (1995). Sequence analyses and a unifying system of viral taxonomy: consensus via consent. Arch. Virol. 140: 2093–2099.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., C. A. Suttle (1995a). Nested PCR with three highly degenerate primers for amplification and identification of DNA from related organisms. BioTechniques 18: 609–612.

    PubMed  CAS  Google Scholar 

  • Chen, F., C. A. Suttle (1995b). Amplification of DNA polymerase gene fragments from viruses infecting microalgae. Appl. envir. Microbiol 61: 1274–1278.

    CAS  Google Scholar 

  • Chen, F., C. A. Suttle (1996). Evolutionary relationships among large double stranded DNA viruses that infect microalgae and other organisms as inferred from DNA polymerase genes. Virology 219: 170–178.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., C. A. Suttle, S. M. Short (1996). Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl. envir. Microbiol. 62(8): 2869–2874.

    CAS  Google Scholar 

  • Chiura, H. X. (1997). Generalized gene transfer by virus-like particles from marine bacteria. Aquat. microb. Ecol. 13: 75–83.

    Article  Google Scholar 

  • Cottrell, M. T., C. A. Suttle (1991). Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar. Ecol. Prog. Ser. 78: 1–9.

    Article  Google Scholar 

  • Cottrell, M. T., C. A. Suttle (1995a). Dynamics of a lytic virus infecting the marine picoflagellate Micromonas pusilla. Limnol. Oceanogr. 40(4): 730–739.

    Article  Google Scholar 

  • Cottrell, M. T., C. A. Suttle (1995b). Genetic diversity of algal viruses which lyse the photosynthetic picoflagellate Micromonas pusilla (Prasinophyceae). Appl. envir. Mirobiol. 61(8): 3088–3091.

    CAS  Google Scholar 

  • Damagnez, V., J. Tillit, A-M. de Recondo, G. Baldacci (1991). The POLI gene from fission yeast, Schizosaccharomyces pombe, shows conserved amino acid blocks specific for eukaryotic DNA polymerases alpha. Mol. Gen. Genet. 226: 182–189.

    Article  PubMed  CAS  Google Scholar 

  • Field, K. G., D. Gordon, T. Wright, Rappé, E. Urbach, K. Vergin, S. J. Giovannoni (1997). Diversity and Depth-specific distribution of SAR11 cluster rRNA genes from marine planktonic bacteria. Appl. envir. Microbiol. 63(1): 63–70.

    CAS  Google Scholar 

  • Ferris, M. J., G. Muyzer, D. M. Ward (1996). Denaturing gradient gel electrophoresis profiles of 15S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. envir. Microbiol. 62: 340–346.

    CAS  Google Scholar 

  • Fuhrman, J. A., K. McCallum, A. A. Davis (1992). Novel major archaebacterial group from marine plankton. Nature 356: 148–149.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrman, J. A., C. A. Suttle (1993). Viruses in marine planktonic systems. Oceanography 6(2): 51–63.

    Article  Google Scholar 

  • Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, K. G. Field (1990). Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni, S., S. C. Cary (1993). Probing marine systems with ribosomal RNAs. Oceanography 6(3): 95–104.

    Article  Google Scholar 

  • Grabherr, R., P. Strasser, J. L. Van Etten (1992). The DNA polymerase gene from Chlorella viruses PBCV-1 and NY-2A contains and intron with nuclear splicing sequences. Virology 188: 721–731.

    Article  PubMed  CAS  Google Scholar 

  • Heuer, H., M. Krsek, P. Baker, K. Smalla, E. M. H. Wellington (1997). Analysis of Actinomycete communities by specific amplification of genes encoding 16s rRNA and gel-electrophoretic separation in denaturing gradients. Appl. envir. Microbiol. 63(8): 3233–3241.

    CAS  Google Scholar 

  • Illana, B., L. Blanco, M. Salas (1996). Functional characterization of the genes coding for the terminal protein and DNA polymerase from bacteriophage GA-1. Evidence for a sliding-back mechanism during protein-primed GA-1 DNA replication. J. mol. Biol. 264: 453–464.

    CAS  Google Scholar 

  • Innis, M. A., D. H. Gefland, J. J. Sninsky, T. J. White (1990). PCR protocols: A Guide to Methods and Applications. Academic Press, Inc., San Diego. 482 pp.

    Google Scholar 

  • Ito, J., D. K. Braithwaite (1990). Yeast mitochondrial DNA polymerase is related to the family A DNA polymerases. Nucl. Acids Res. 18(22): 6716.

    Article  PubMed  CAS  Google Scholar 

  • Ito, J., D. K. Braithwaite (1991). Compilation and alignment of DNA polymerase sequences. Nucl. Acids. Res. 19(15): 4045–4057.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki, H., Y. Ishino, H. Toh, A. Nakata, H. Shinagawa (1991). Es-cherichia coli DNA polymerase II is homologous to a-like DNA polymerases. Mol. Gen. Genet. 226: 24–33.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen, A., G. Bratbak, M. Heldal (1996). Isolation and characterization of a virus infecting Phaeocystis pouchetii (Prymne-siophyceae). J. Phycol. 23: 923–927.

    Article  Google Scholar 

  • Jiang, S. C., J. H. Paul (1994). Seasonal and diel abundance of viruses and the occurrence of lysogeny/bacteriocinogy in the marine environment. Mar. Ecol. Prog. Ser. 104: 163–172.

    Article  Google Scholar 

  • Joyce C. M., Steitz, T. A. (1994). Function and Structure Relationships in DNA Polymerases. Annu. Rev. Biochem. 63: 777–822.

    Article  PubMed  CAS  Google Scholar 

  • Jung, G., M. C. Leavitt, J.-C, Hsieh, J. Ito (1987). Bacteriophage PRD1 DNA polymerase: Evolution of DNA polymerases. Proc. natl. Acad. Sci. 84: 8287–8291.

    Article  PubMed  CAS  Google Scholar 

  • Kamer, G., Argos P. (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucl. Acids Res. 12(18): 7269–7282.

    Article  PubMed  CAS  Google Scholar 

  • Kopecka, H. S., S. Dubrou, J. Prevut, J. Mar&chal, J. M. Lopez-Pila (1993). Detection of naturally occurring enteroviruses in waters by reverse transcription, polymerase chain reaction, and hybridization. Appl. envir. Microbiol. 59: 1213–1219.

    CAS  Google Scholar 

  • Liesack, W., H. Weyland, E. Stackebrandt (1991). Potential risks of gene amplification by PCR as determined by 16s rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb. Ecol. 21: 191–198.

    Article  CAS  Google Scholar 

  • Mayer, J. A., F. J. R. Taylor (1979). A virus which lyses the marine nanoflagellate Micromonas pusilla. Nature 281: 299–301.

    Article  Google Scholar 

  • Meyer, G., C. Vlcek, V. Paces, M. K. O’Hara, P.-P. Pastoret, E. Thiry, M. Schwyzer (1997). Sequence analysis of the bovine herpesvirus type 1 genes homologous to the DNA polymerase (UL30), the major DNA-binding protein (UL29) and ICP18.5 assembly protein (UL28) genes of herpes simplex virus. Arch Virol 142: 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Milhgan, K. L., E. M. Cosper (1994). Isolation of virus capable of lysing the brown tide microalga, Aureococcus anaphagefferens. Science 266: 805–807.

    Article  Google Scholar 

  • Mullis, K. B., Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155: 335–351.

    Article  PubMed  CAS  Google Scholar 

  • Muyzer, G., E. C. De Waal, A. G. Uitterlinden (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. envir. Microbiol. 59: 695–700.

    CAS  Google Scholar 

  • Myers, R. M., T. Maniatis, L. S. Lerman (1987). Detection and localization of single base changes by denaturing gradient gel electrophoresis. Meth. Enzymol. 155: 501–527.

    Article  PubMed  CAS  Google Scholar 

  • Nagasaki, K., M. Yamaguchi (1997). Isolation of a virus infectious to the harmful bloom forming alga Heterosigma akashiwo (Raphidophyceae). Aquat. microb. Ecol. 13: 135–140.

    Article  Google Scholar 

  • Niibel, U., F. Garcia-Pichel, G. Muyzer (1997). PCR primers to amplify 16s rRNA genes from cyanobacteria. Appl. envir. Microbiol. 63(8): 3327–3332.

    Google Scholar 

  • Ohki, K., Y. Fujita (1996). Occurrence of a temperate cyanophage lysogenizing the marine cyanophyte Phormidium persicinium. J. Phycol. 32: 365–370.

    Article  Google Scholar 

  • Paul, J. H., S. C. Jiang, J. B. Rose (1991). Concentration of viruses and dissolved DNA from aquatic environments by vortex flow filtration. Appl. envir. Microb. 57: 2197–2204.

    CAS  Google Scholar 

  • Pizzagalli, A., P. Valsasnini, P. Plevani, G. Lucchini (1988). DNA polymerase I gene of Saccharomyces cerevisiae: Nucleotide sequence, mapping of a temperature-sensitive mutation, and protein homology with other DNA polymerases. Proc. natl. Acad. Sci. 85: 3772–3776.

    Article  PubMed  CAS  Google Scholar 

  • Proctor, L. M., J. A. Fuhrman (1990). Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60–62.

    Article  Google Scholar 

  • Reysenbach, A.-L., L. J. Giver, G. S. Wickham, N. R. Pace (1992). Differential amplification of rRNA genes by polymerase chain reaction. Appl. envir. Microbiol. 58(10): 3417–3418.

    CAS  Google Scholar 

  • Ridley, R. G., J. H. White, S. M. McAleese, M. Goman, P. Alano, E. de Vries, B. J. Kilbey (1991). DNA polymerase δ: gene sequences from Plasmodium falciparum indicate that this enzyme is more highly conserved that DNA polymerase α. Nucl. Acids Res. 19(24): 6731–6736.

    Article  PubMed  CAS  Google Scholar 

  • Rohozinski, J., J. L. Van Etten (1989). Characterization of DNA polymerases in an uninfected and virus PBCV-1 infected green algae — Chlorella strain NC64A. Intervirology 30: 156–162.

    PubMed  CAS  Google Scholar 

  • Rööeke, S., G. Muyzer, C. Wawer, G. Wanner, W. Lubitz (1996). Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-ampIified gene fragments coding for 16s rRNA. Appl. envir. Microbiol. 62(6): 2059–2

    Google Scholar 

  • Sambrook, J., E. F. Fritsch, T. Maniatis (1989). Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, N. Y.

    Google Scholar 

  • Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. G. Higuchi, T. T. Horn, K. B. Mullis, H. A. Erlich (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–

    Article  PubMed  CAS  Google Scholar 

  • Santegoeds, C. M., S. C. Nold, D. M. Ward (1996). Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl. envir. Microbiol. 62: 3922–3928.

    CAS  Google Scholar 

  • Sheffield, V. C., D. R. Cox, L. S. Lerman, R. M. Meyers (1989). Attachment of a 40-base-pair G +C rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. natl. Acad. Sci 86: 232–236.

    Article  PubMed  CAS  Google Scholar 

  • Sheffield, V. C., J. S. Beck, E. M. Stone. (1992). A simple efficient method for attachment of a 40-base pair, GC-rich sequence to PCR-amplified DNA. BioTechniques 12(3): 386–387.

    PubMed  CAS  Google Scholar 

  • Scholin, C. A., D. M. Anderson (1994). Identification of group-and strain-specific genetic markers for globally distributed Alexan-drium (Dinophyceae). I. RFLP analysis of SSU rRNA genes. J. Phycol. 30: 744–754.

    CAS  Google Scholar 

  • Steffan, R. J., R. M. Atlas (1991). Polymerase chain reaction: applications in environmental microbiology. Annu. Rev. Microbiol. 45: 137–161.

    Article  PubMed  CAS  Google Scholar 

  • Suttle, C. A., A. M. Chan, M. T. Cottrell (1990). Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347: 467–469.

    Article  Google Scholar 

  • Suttle, C. A. (1992). Inhibition of photosynthesis in phytoplankton by the submicron size fraction concentrated from seawater. Mar. Ecol. Prog. Ser. 87: 105–112.

    Article  Google Scholar 

  • Suttle, C. A. (1994). The significance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28: 237–243.

    Article  Google Scholar 

  • Suttle, C. A., A. M. Chan (1995). Viruses infecting the marine Prymnesiophyte Chyrsochromulina spp.: isolation, preliminary characterization and natural abundance. Mar. Ecol. Prog. Ser. 118:275–282.

    Article  Google Scholar 

  • Suzuki, M. T., M. S. Rappé, Z. W. Haimberger, H. Winfield, N. Adair, J. Ströbel, S. J. Giovannoni (1997). Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. envir. Microbiol. 63(3): 983–989.

    CAS  Google Scholar 

  • Thingstad, T.F., M. Heldal, G. Bratback, I. Dundas (1993). Are viruses important partners in pelagic food webs? Trends ecol. Evol. 8(6): 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Torella, F., R. Y. Morita (1979). Evidence by electron micrographs for a high incidence of bacteriophage particles in the waters of Yaquina Bay, Oregon: ecological and taxonomic implications. Appl. envir. Microbiol. 37: 774–778.

    Google Scholar 

  • Van Etten, J. L., L. C. Lane, R. H. Meints (1991). Viruses and virus like particles of eukaryotic algae. Microbiol. Rev. 55: 586–620.

    PubMed  Google Scholar 

  • Wang, S.-F. (1991). Eukaryotic DNA Polymerases. Annu. Rev. Biochem. 60: 513–552.

    Article  PubMed  CAS  Google Scholar 

  • Waterbury, J. B., F. W. Valois (1993). Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. envir. Microbiol. 59(10): 3393–3399.

    CAS  Google Scholar 

  • Weinbauer, M. G., D. Fuks, P. Peduzzi (1993). Distribution of viruses and dissolved DNA along a coastal trophic gradient in the northern Adriatic Sea. Appl. envir. Microbiol. 59: 4074–4082.

    CAS  Google Scholar 

  • Wiggins, B. A., M. Alexander (1985). Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl. envir. Microbiol. 49(1): 19–23.

    CAS  Google Scholar 

  • Wong, S. W., A. F. Wahl, P-M. Yuan, N. Arai, B. E. Pearson, K. Arai, D. Korn, M. W. Hunkapiller, T.S. F. Wang (1988). Human DNA polymerase a gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO 7(1): 37–47.

    CAS  Google Scholar 

  • Wright, T. D., K. L. Vergin, P. W. Boyd, S. J. Giovannoni (1997). A novel δ-subdivision proteobacterial lineage from the lower ocean surface layer. Appl. envir. Microbiol. 63(4): 1441–1448.

    CAS  Google Scholar 

  • Zhang, Y. P., C. A. Suttle (1994). Design and use of PCR primers for B-family DNA polymerase genes to detect and identify viruses and microbes (abstract), p. a-85. ASLO/PSA Joint Meeting, Florida, June 12–16, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. P. Zehr M. A. Voytek

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Short, S.M., Suttle, C.A. (1999). Use of the polymerase chain reaction and denaturing gradient gel electrophoresis to study diversity in natural virus communities. In: Zehr, J.P., Voytek, M.A. (eds) Molecular Ecology of Aquatic Communities. Developments in Hydrobiology, vol 138. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4201-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4201-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5827-8

  • Online ISBN: 978-94-011-4201-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics