Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 558))

  • 138 Accesses

Abstract

Because the interior of the Sun is opaque to electromagnetic waves, the radiation we receive from it on Earth is emitted in the outermost layers: the photosphere. Therefore our knowledge of the solar interior is based solely on theoretical models, which are built by making some plausible assumptions about the physical conditions and processes that are likely to prevail there. Fortunately, a powerful technique - helioseismology - has been developed in the last twenty years, which permits to probe directly the solar interior by means of acoustic waves, and this had a tremendous impact on solar physics because it provides tight observational constraints on our models. We shall illustrate this here by a few examples of recent advances in modeling the Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antia, H.M. and Basu, S. (1997) Effect of turbulent pressure on solar oscillation frequencies, Proc. SCORe’96; ed. F.P. Pijpers, J. Christensen-Dalsgaard and C.S. Rosenthal, Kluwer Acad. Publ., Astrophys. Space Sci. Library 225, 51

    Google Scholar 

  2. Antia, H.M., Basu, S. and Chitre, S.M. (1998) Solar internal rotation rate and the latitudinal variation of the tachocline, Mon. Not. Roy. Astron. Soc. 298, 534

    Article  ADS  Google Scholar 

  3. Antia, H.M. and Chitre, S.M. (1998) Determination of temperature and chemical composition profiles in the solar interior from seismic models, Astron. Astrophys. 339, 239

    ADS  Google Scholar 

  4. Balachandran, S. and Bell, R.A. (1997) The “Missing UV opacity” and the solar beryllium abundance, American Astron. Soc. Meeting 191 #74.08

    ADS  Google Scholar 

  5. Bernkopf, J. (1998) Unified stellar models and convection in cool stars, Astron. Astrophys. 332, 127

    ADS  Google Scholar 

  6. Brandenburg, A., Jennings, R.L., Nordlund, A, Rieutord, M., Stein, R. F. and Tuominen, I. (1996) Magnetic structures in a dynamo simulation, J. Fluid Mech. 306, 325

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Brown, T.M, Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O. and Morrow, C.A. (1989). Inferring the Sun’s internal angular velocity from observed p-mode frequency splittings, Astrophys. J. 343, 526

    Article  ADS  Google Scholar 

  8. Brummell, N.H., Hurlburt, N.E. and Toomre, J. (1996) Turbulent compressible convection with rotation. I. Flow structure and evolution, Astrophys. J. 473, 494

    Article  ADS  Google Scholar 

  9. Brummell, N.H., Hurlburt, N.E. and Toomre, J. (1998) Turbulent compressible convection with rotation. II. Mean flows and differential rotation, Astrophys. J. 493, 955

    Article  ADS  Google Scholar 

  10. Brun, A.S., Turck-Chièze, S. and Morel, P. (1998) Standard solar models in the light of new helioseismic constraints. I. The solar core, Astrophys. J. 506, 913

    Article  ADS  Google Scholar 

  11. Brun, A.S., Turck-Chièze, S. and Zahn, J.-P. (1999) Standard solar models in the light of new helioseismic constraints. II. Mixing below the convection zone, Astrophys. J. 525, 1032

    Article  ADS  Google Scholar 

  12. Canuto, V.M., Goldman, I. and Mazzitelli, I. (1996) Stellar turbulent convection: a self-consistent model, Astrophys. J. 473, 550

    Article  ADS  Google Scholar 

  13. Chaboyer, B. and Zahn, J.-P. (1992) Effect of horizontal turbulent diffusion on the transport by meridional circulation, Astron. Astrophys. 253, 173

    ADS  MATH  Google Scholar 

  14. Corbard, T., Blanc-Féraud, L., Berthomieu, G. and Provost, J. (1999) Non linear regularization for helioseismic inversions. Application for the study of the solar tachocline, Astron. Astrophys. 344, 696

    ADS  Google Scholar 

  15. Donahue, R.A., Saar, S.H. and Baliunas, S.L. (1996) A relationship between mean rotation period in lower main-sequence stars and its observed range, Astrophys. J. 466, 384

    Article  ADS  Google Scholar 

  16. Dorch, B. (1998) Thesis, http://www.astro.ku.dk/ -dorch

  17. D’Silva, S., Duvall, T.L. Jr., Jefferies, S.M. and Harvey, J.W. (1996) Helioseismic tomography, Astrophys. J. 471, 1030

    Article  ADS  Google Scholar 

  18. Eddington, A.S. (1925) Circulating currents in rotating stars, Observatory 48, 73

    ADS  Google Scholar 

  19. Elliott, J.R. (1997) Aspects of the solar tachocline, Astron. Astrophys. 327, 1222

    ADS  Google Scholar 

  20. Elliott, J.R., Miesch, M. and Toomre, J. (1999) Large-eddy simulations of turbulent solar convection and its coupling with rotation, Proc. SOHO-9 workshop, 54

    Google Scholar 

  21. Freytag, B., Ludwig, H.-G. and Steffen, M. (1996) Hydrodynamical models of stellar convection. The role of overshoot in DA white dwarfs, A-type stars, and the Sun, Astron. Astrophys. 313, 497

    ADS  Google Scholar 

  22. Georgobiani, D., Kosovichev, A. G., Nigam, R., Nordlund, A. and Stein, R. F. (2000) Numerical simulations of oscillation modes of the solar convection zone, Astrophys. J. 530, 139

    Article  ADS  Google Scholar 

  23. Gough, D.O. and McIntyre, M.E. (1998) Inevitability of a magnetic field in the Sun’s radiative interior, Nature 394, 755

    Article  ADS  Google Scholar 

  24. Grevesse, N. and Sauval, A.J. (1998) Standard solar composition, Space Sci. Rev. 85, 161

    Article  ADS  Google Scholar 

  25. Howard, L.N., Moore, D.W. and Spiegel, E.A. (1967) Solar spin-down problem, Nature 214, 1297

    Article  ADS  Google Scholar 

  26. Kiraga, M., Zahn, J.-P., Stepien, K., Jahn, K., Rózyczka, M. and Muthsam, H.J. (1999) Hydrodynamical simulations of penetrative convection and generation of internal gravity waves, ASP Conf. Ser. 173, 269

    ADS  Google Scholar 

  27. Kumar, P. and Quataert, E. (1997) Angular momentum transport by gravity waves and its effect on the rotation of the solar interior, Astrophys. J. 493, 412

    Article  ADS  Google Scholar 

  28. Kumar, P., Talon, S. and Zahn, J.-P. (1999) Angular momentum redistribution by waves in the Sun, Astrophys. J. 520, 859

    Article  ADS  Google Scholar 

  29. Ludwig, H.-G., Freytag, B. and Steffen, M. (1999) A calibration of the mixing-length for solar-type stars based on hydrodynamical simulations. I. Methodical aspects and results for solar metallicity, Astron. Astrophys. 346, 111

    ADS  Google Scholar 

  30. Maeder, A. and Zahn, J.-P. (1998) Stellar evolution with rotation. III. Meridional circulation with μ-gradients and non-stationarity, Astron. Astrophys. 334, 1000

    ADS  Google Scholar 

  31. Matias, J. and Zahn, J.-P. (1997) The internal rotation of the Sun, IAU Symposium 181, poster volume (ed. G. Berthomieu and F.-X. Schmieder)

    Google Scholar 

  32. Mestel, L. (1953) Rotation and stellar evolution, Mon. Not. Roy. Astron. Soc. 113, 716

    ADS  MATH  Google Scholar 

  33. Morel, P. and Schatzman, E. (1996) Diffusion near the solar core, Astron. Astrophys. 310, 982

    ADS  Google Scholar 

  34. Nordlund, A. and Stein, R.F. (1998) The excitation and damping of p-modes, Proc. IAU Symp. 185: New Eyes to See Inside the Sun and Stars; ed. F.-L. Deubner, J. Christensen-Dalsgaard and D. Kurt, 199

    Google Scholar 

  35. Press, W. H. (1981) Radiative and other effects from internal waves in solar and stellar interiors, Astrophys. J. 245, 286

    Article  MathSciNet  ADS  Google Scholar 

  36. Rieutord, M. and Zahn, J.-P. (1995) Turbulent plumes in stellar convective envelopes, Astron. Astrophys. 296, 127

    ADS  Google Scholar 

  37. Skumanich, A. (1972) Time scales for Call emission decay, rotational braking, and Lithium depletion, Astrophys. J. 171, 565

    Article  ADS  Google Scholar 

  38. Spiegel, E.A. and Zahn, J.-P. (1992) The solar tachocline, Astron. Astrophys. 279, 431

    Google Scholar 

  39. Stein, R.F. and Nordlund, A. (1998) Simulations of solar granulation. I. General properties, Astrophys. J. 499, 914

    Article  ADS  Google Scholar 

  40. Sweet, P.A. (1950) The importance of rotation in stellar evolution, Mon. Not. Roy. Astron. Soc. 110, 548

    MathSciNet  ADS  MATH  Google Scholar 

  41. Talon, S. and Zahn, J.-P. (1997) Anisotropic diffusion and shear instabilities, Astron. Astrophys. 317, 749

    ADS  Google Scholar 

  42. Tobias, S.M., Brummell, N.H., Clune, T.L. and Toomre, J. (1998) Pumping of magnetic fields by turbulent penetrative convection, Astrophys. J. 502, 177

    Article  ADS  Google Scholar 

  43. Ventura, P., Zeppieri, A., Mazzitelli, I. and D’Antona, F. (1998) Pre-main sequence lithium burning: the quest for a new structural parameter, Astron. Astrophys. 331, 1011

    ADS  Google Scholar 

  44. Vitense, E. (1953) Die Wasserstoffkonvektionzone der Sonne, Zeitschrift f. Astrophys. 32, 135

    ADS  Google Scholar 

  45. Vogt, H. (1925) Zum Strahlungsgleichgewicht der Sterne, Astron. Nachr. 223, 229

    Article  ADS  MATH  Google Scholar 

  46. Watson, M. (1981) Shear instability of differential rotation in stars, Geophys. Astrophys. Fluid Dynam. 16, 285

    Article  ADS  MATH  Google Scholar 

  47. Zahn, J.-P. (1992) Circulation and turbulence in rotating stars, Astron. Astrophys. 265, 115

    ADS  Google Scholar 

  48. Zahn, J.-P., Talon, S. and Matias, J. (1997) Angular momentum transport by internal waves in the solar interior, Astron. Astrophys. 322, 320

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Zahn, JP. (2000). What we Know about the Solar Interior. In: Zahn, JP., Stavinschi, M. (eds) Advances in Solar Research at Eclipses from Ground and from Space. NATO Science Series, vol 558. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4325-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4325-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6624-9

  • Online ISBN: 978-94-011-4325-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics