Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 371))

  • 392 Accesses

Abstract

We present explicit theoretical results for the viscosity and diffusion coefficient of concentrated hard-sphere-like colloidal suspensions. Our results are based on two relevant physical processes that take place on two widely separated time scales. At short times, τ B t ≪ τ P , with the Brownian time τ B ∼ 1 ns and the Péclet time τ B ∼ 1 ms, the dominant process is the so-called cage-diffusion. The colloidal particles are locked up in cages and the difficulty to escape out of one cage and into the next is related to the deformability of the cage. This process has a collective character reflected in the fact that each particle inside a cage is at the same time a wall particle of a neighboring cage and the escape rate is determined by the short-time collective diffusion coefficient for which we present an explicit expression. At long times, t ≪ τ P , the dominant process is a coupled relaxation mechanism as described by the mode-coupling theory, via two slowly decaying modes associated with conserved single-particle or collective dynamical variables. We present closed expressions for the long-time wavenumber dependent self and collective diffusion coefficients and for the Newtonian and frequency dependent viscosity and compare them with a variety of experimental and computational results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Verberg, Transport Properties in Concentrated Colloidal Suspensions, Ph.D. thesis, (Delft University of Technology, 1998).

    Google Scholar 

  2. P.N. Pusey and R.J.A. Tough, Particle Interactions, in Dynamic Light Scattering, R. Pecora, ed., (Plenum Press, New York, 1985).

    Google Scholar 

  3. J.K.G. Dhont, An Introduction to Dynamics of Colloids, (Elsevier, Amsterdam, 1996).

    Google Scholar 

  4. J.F. Brady, J. Chem. Phys. 99, 567 (1993).

    Article  ADS  Google Scholar 

  5. B. Cichocki and W. Hess, Physica A 141, 475 (1987).

    Article  ADS  Google Scholar 

  6. W. Hess and R. Klein, Adv. Phys. 32, 173 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  7. R. Verberg, I.M. de Schepper, and E.G.D. Cohen, Europhys. Lett. 48, 397 (1999), and Phys. Rev. E, to appear (2000).

    Article  ADS  Google Scholar 

  8. R. Verberg, E.G.D. Cohen, and I.M. de Schepper, Phys. Rev. E 55, 3143 (1997).

    Article  ADS  Google Scholar 

  9. I.M. de Schepper, H.E. Smorenburg, and E.G.D. Cohen, Phys. Rev. Lett. 70, 2178 (1993).

    Article  ADS  Google Scholar 

  10. C.W.J. Beenakker, Physica A 128, 48 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  11. C.W.J. Beenakker and P. Mazur, Physica A 126, 349 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  12. A.J.C. Ladd, J. Chem. Phys. 93, 3484 (1990).

    Article  ADS  Google Scholar 

  13. I.M. de Schepper, E.G.D. Cohen, and M.J. Zuilhof, Phys. Lett. A 101, 399 (1984).

    Article  ADS  Google Scholar 

  14. E.G.D. Cohen, I.M. de Schepper, and M.J. Zuilhof, Physica B 127, 282 (1984).

    Article  Google Scholar 

  15. E.G.D. Cohen, P. Westerhuijs, and I.M. de Schepper, Phys. Rev. Lett. 59, 2872 (1987).

    Article  ADS  Google Scholar 

  16. I.M. de Schepper, E.G.D. Cohen, P.N. Pusey, and H.N.W. Lekkerkerker, J. Phys.: Cond. Matter 1, 6503 (1989).

    Article  ADS  Google Scholar 

  17. P.N. Pusey, H.N.W. Lekkerkerker, E.G.D. Cohen, and I.M. de Schepper, Physica A 164, 12 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  18. E.G.D. Cohen and I.M. de Schepper, Phys. Rev. Lett. 75, 2252 (1995).

    Article  ADS  Google Scholar 

  19. D. Henderson and E.W. Grundke, J. Chem. Phys. 63, 601 (1975).

    Article  ADS  Google Scholar 

  20. P.N. Segrè, O.P. Behrend, and P.N. Pusey, Phys. Rev. E 52, 5070 (1995).

    Article  ADS  Google Scholar 

  21. P.N. Pusey and W. van Megen, Phys. Rev. Lett. 59, 2083 (1987).

    Article  ADS  Google Scholar 

  22. W. van Megen, R.H. Ottewil, S.M. Owens, and P.N. Pusey, J. Chem. Phys. 82, 508 (1985).

    Article  ADS  Google Scholar 

  23. I.M. de Schepper, E.G.D. Cohen, and R. Verberg, Phys. Rev. Lett. 77, 584 (1996).

    Article  ADS  Google Scholar 

  24. P.N. Segrè, S. P. Meeker, P.N. Pusey, and W.C.K. Poon, Phys. Rev. Lett. 77, 585 (1996).

    Article  ADS  Google Scholar 

  25. W. van Megen, S.M. Underwood, R.H. Ottewil, N.St.J. Williams, and P.N. Pusey, Far. Disc. Chem. Soc. 83, 47 (1987).

    Article  Google Scholar 

  26. P.N. Pusey and W. van Megen, J. Phys. 44, 285 (1983).

    Article  Google Scholar 

  27. A. van Veluwen, H.N.W. Lekkerkerker, C.G. de Kruif, and A. Vrij, J. Chem. Phys. 87, 4873 (1987).

    Article  ADS  Google Scholar 

  28. A.J.C. Ladd, Phys. Rev. Lett. 70, 1339 (1993).

    Article  ADS  Google Scholar 

  29. J.X. Zhu, D.J. Durian, J. Müller, D.A. Weitz, and D.J. Pine, Phys. Rev. Lett. 68, 2559 (1992).

    Article  ADS  Google Scholar 

  30. J.C. van der Werff, C.B. de Kruif, C. Blom, and J. Mellema, Phys. Rev. A 39, 795 (1989).

    Article  ADS  Google Scholar 

  31. B. Cichocki and B.U. Felderhof, Phys. Rev. A 46, 7723 (1992).

    Article  ADS  Google Scholar 

  32. B. Cichocki and B.U. Felderhof, J. Chem. Phys. 101, 7850 (1994).

    Article  ADS  Google Scholar 

  33. I.M. de Schepper, R. Verberg, and E.G.D. Cohen, Mol. Phys. 95, 595 (1998).

    Article  ADS  Google Scholar 

  34. E.G.D. Cohen and I.M. de Schepper, J. Stat. Phys. 63, 241 (1991).

    Article  ADS  Google Scholar 

  35. P.N. Segrè, S.P. Meeker, P.N. Pusey, and W.C.K. Poon, Phys. Rev. Lett. 75, 958 (1995).

    Article  ADS  Google Scholar 

  36. M.M. Kops-Werkhoven and H. M. Fijnaut, J. Chem. Phys. 77, 2242 (1982).

    Article  ADS  Google Scholar 

  37. M. Medina-Noyola, Phys. Rev. Lett. 60, 2705 (1988).

    Article  ADS  Google Scholar 

  38. H.W. Jackson and E. Feenberg, Rev. Mod. Phys. 34, 686 (1962).

    Article  ADS  MATH  Google Scholar 

  39. P. Baur, G. Nägele, and R. Klein, Phys. Rev. E 53, 6224 (1996).

    Article  ADS  Google Scholar 

  40. P.N. Segrè and P. N. Pusey, Phys. Rev. Lett. 77, 771 (1996).

    Article  ADS  Google Scholar 

  41. J.C. van der Werff and C.B. de Kruif, J. Rheol. 33, 421 (1989).

    Article  Google Scholar 

  42. D.A.R. Jones, B. Leary, and D.V. Boger, J. Colloid Interface Sci. 147, 479 (1991).

    Article  Google Scholar 

  43. D.A.R. Jones, B. Leary, and D.V. Boger, J. Colloid Interface Sci. 150, 84 (1992).

    Article  Google Scholar 

  44. Y.S. Papir and I.M Krieger, J. Colloid Interface Sci. 34, 126 (1970).

    Article  Google Scholar 

  45. W. Götze, Aspect of Structural Glass Transitions, in Liquids, Freezing and the Glass Transition, J.P. Hansen, D. Levesque, and J. Zinn-Justin, eds., (North-Holland, Amsterdam, 1991), p. 287.

    Google Scholar 

  46. E.G.D. Cohen, R. Verberg, and I.M. de Schepper, Physica A 251, 251 (1998).

    Article  Google Scholar 

  47. A. Imhof, A. van Blaaderen, G. Maret, J. Mellema, and J.K.G. Dhont, J. Chem. Phys. 100, 2170 (1994).

    Article  ADS  Google Scholar 

  48. Y.C. Liu and E.Y. Shue, E. Y., Phys. Rev. Lett. 76, 700 (1996).

    Article  ADS  Google Scholar 

  49. Y.C. Liu, S.H. Chen, and J.S. Huang, Phys. Rev. E 54, 1698 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verberg, R., de Schepper, I.M., Cohen, E.G.D. (2000). Viscosity and Diffusion of Concentrated Hard-Sphere-Like Colloidal Suspensions. In: Karkheck, J. (eds) Dynamics: Models and Kinetic Methods for Non-equilibrium Many Body Systems. NATO Science Series, vol 371. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4365-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4365-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6554-9

  • Online ISBN: 978-94-011-4365-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics