Skip to main content

Abstract

Surgical destruction of critical areas of cardiac tissue as a means to “cure” patients with tachyarrhythmias has been the subject of investigation by cardiologists, cardiac electrophysiologists, and cardiac surgeons for many years. Initially, most efforts were directed at patients with Wolff-Parkinson-White Syndrome [1,2] or ventricular tachycardia [3–7]. Since the development of those highly-invasive surgical techniques, a number of less in vasive techniques using a variety of “energy sources” have been under investigation. These have ranged from chemical ablation using ethanol [8,9], to ablation using a direct current shock [10–13] and, most prominently, to the highly successful use of radiofrequency (RF) energy for the low-risk cure of many different cardiac arrhythmias [14–16]. In this chapter we discuss the fundamental principles involved in the performance of electrode catheter ablation. Included in this section is a discussion of the induction of the clinical arrhythmia, localization or “mapping” of the critical tissue that is the target for the ablation procedure, delivery of the destructive energy to the target tissue, and finally, verification of successful elimination of the arrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sealy WC, Hattler BG, Jr., Blumenschein SD, Cobb FR: Surgical treatment of Wolff-Parkinson-White syndrome. Ann Thorac Surg 8:1–11, 1969.

    PubMed  CAS  Google Scholar 

  2. Sealy WC, Gallagher JJ, Wallace AG: The surgical treatment of Wolff-Parkinson-White Syndrome: evolution of improved methods for identification and interruption of the Kent Bundle. Ann Thorac Surg 22:443–457, 1976.

    PubMed  CAS  Google Scholar 

  3. Harken AH, Josephson ME, Horowitz LN: Surgical endocardial resection for the treatment of malignant ventricular tachycardia. Ann Surg 190:456–460, 1979.

    PubMed  CAS  Google Scholar 

  4. Harken AH, Horowitz LN, Josephson ME: The surgical treatment of ventricular tachycardia. Ann Thorac Surg 30:499–508, 1980.

    PubMed  CAS  Google Scholar 

  5. Harken AH, Wetstein L, Josephson ME: Mechanisms and surgical management of ventricular tachyarrhythmias. Cardiovasc Clin 15:287–300, 1985.

    PubMed  CAS  Google Scholar 

  6. Harken AH, Josephson ME: Recurrent ventricular tachycardia: how effective is surgical management? Am J Surg 145:718–723, 1983.

    PubMed  CAS  Google Scholar 

  7. Josephson ME, Harken AH, Horowitz LN: Endocardial excision: a new surgical technique for the treatment of recurrent ventricular tachycardia. Circulation 60:1430–1439, 1979.

    PubMed  CAS  Google Scholar 

  8. Kay GN, Bubien RS, Dailey SM, et al.: A prospective evaluation of intracoronary ethanol ablation of the atrioventricular conduction system. J Am Coll Cardiol 17:1634–1640, 1991.

    PubMed  CAS  Google Scholar 

  9. Kay GN, Epstein AE, Bubien RS, et al.: Intracoronary ethanol ablation for the treatment of recurrent sustained ventricular tachycardia. J Am Coll Cardiol 19:159–168, 1992.

    PubMed  CAS  Google Scholar 

  10. Kuck ICH, Jackman WM, Pitha J, et al.: Percutaneous catheter ablation at the mitral annulus in canines using a bipolar epicardial-endocardial electrode configuration. Pacing Clin Electrophysiol 11:760–775, 1988.

    PubMed  CAS  Google Scholar 

  11. Morady F, Scheinman MM, Griffin JC, et al.: Results of catheter ablation of ventricular tachycardia using direct current shocks. Pacing Clin Electrophysiol 12:252–257, 1989.

    PubMed  CAS  Google Scholar 

  12. Fisher JD, Scavin GM, Roth JA, et al.: Direct current shock ablation: quantitative assessment of proarrhythmic effects. Pacing Clin Electrophysiol 14:2154–2166, 1991.

    PubMed  CAS  Google Scholar 

  13. Rosenquist M, Lee MA, Moulinier L, et al.: Long-term follow-up of patients after transcatheter direct current ablation of the atrioventricular junction. J Am Coll Cardiol 16:1467–1474, 1990.

    Google Scholar 

  14. Huang SK, Graham AR, Hoyt RH, Odell RC: Transcatheter desiccation of the canine left ventricle using radiofrequency energy: a pilot study. Am Heart J 114:42–48, 1987.

    PubMed  CAS  Google Scholar 

  15. Huang SK, Bharati S, Graham AR, et al.: Closed chest catheter desiccation of the atrioventricular junc tion using radiofrequency energy—a new method of catheter ablation. J Am Coll Cardiol 9:349–358, 1987.

    PubMed  CAS  Google Scholar 

  16. Borggrefe M, Budde T, Podczeck A, Breithardt G: High frequency alternating current ablation of an ac cessory pathway in humans. J Am Coll Cardiol 10:576–582, 1987.

    PubMed  CAS  Google Scholar 

  17. Jackman WM, Beckman KJ, McClelland JH, et al.: Treatment of supraventricular tachycardia due to atrioventricular nodal reentry, by radiofrequency catheter ablation of slow-pathway conduction. N Engl J Med 327:313–318, 1992.

    PubMed  CAS  Google Scholar 

  18. Moulton K, Miller B, Scott J, Woods WT, Jr.: Radiofrequency catheter ablation for AV nodal reentry: a technique for rapid transection of the slow AV nodal pathway. Pacing Clin Electrophysiol 16:760–768, 1993.

    PubMed  CAS  Google Scholar 

  19. Haissaguerre M, Gaita F, Marcus FI, Clementy J: Radiofrequency catheter ablation of accessory path ways: a contemporary review. J Cardiovasc Electrophysiol 5:532–552, 1994.

    PubMed  CAS  Google Scholar 

  20. Haissaguerre M, Gaita F, Fischer B, et al.: Radiofrequency catheter ablation of left lateral accessory pathways via the coronary sinus. Circulation 86:1464–1468, 1992.

    PubMed  CAS  Google Scholar 

  21. Borggrefe M, Hindricks G, Haverkamp W, Breithardt G: Catheter ablation using radiofrequency energy. Clin Cardiol 13:127–131, 1990.

    PubMed  CAS  Google Scholar 

  22. Kuck KH, Schluter M: Radiofrequency catheter ablation of accessory pathways. Pacing Clin Electrophysiol 15:1380–1386, 1992.

    PubMed  CAS  Google Scholar 

  23. Klein LS, Miles WM: Ablative therapy for ventricular arrhythmias. Prog Cardiovasc Dis 37:225–242, 1995.

    PubMed  CAS  Google Scholar 

  24. Borggrefe M: Catheter ablation of incessant ventricular tachycardia. Isr J Med Sci 32:868–871, 1996.

    PubMed  CAS  Google Scholar 

  25. Strasberg B, Zeevi B, Kusniec J, et al.: Radiofrequency catheter ablation of ectopic atrial tachycardia. Isr J Med Sci 33:112–116, 1997.

    PubMed  CAS  Google Scholar 

  26. Stevenson WG, Friedman PL, Kocovic D, et al.: Radiofrequency catheter ablation of ventricular tachycardia after myocardial infarction. Circulation 98:308–314, 1998.

    PubMed  CAS  Google Scholar 

  27. Stevenson WG, Friedman PL, Ganz LI: Radiofrequency catheter ablation of ventricular tachycardia late after myocardial infarction. J Cardiovasc Electrophysiol 8:1309–1319, 1997.

    PubMed  CAS  Google Scholar 

  28. Rodriguez LM, Smeets JL, Timmermans C, et al.: Radiofrequency catheter ablation of sustained monomorphic ventricular tachycardia in hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol 8:803–806, 1997.

    PubMed  CAS  Google Scholar 

  29. Morady F, Harvey M, Kalbfleisch SJ, et al.: Radiofrequency catheter ablation of ventricular tachycardia in patients with coronary artery disease. Circulation 87:363–372, 1993.

    PubMed  CAS  Google Scholar 

  30. Goldberger J, Kall J, Ehlert F, et al.: Effectiveness of radiofrequency catheter ablation for treatment of atrial tachycardia. Am J Cardiol 72:787–793, 1993.

    PubMed  CAS  Google Scholar 

  31. Ivanov MY, Evdokimov VP, Vlasenco VV: Predictors of successful radiofrequency catheter ablation of sinoatrial tachycardia. Pacing Clin Electrophysiol 21:311–315, 1998.

    PubMed  CAS  Google Scholar 

  32. Chiladakis JA, Vassilikos VP, Maounis TN, et al.: Successful radiofrequency catheter ablation of automatic atrial tachycardia with regression of the cardiomyopathy picture. Pacing Clin Electrophysiol 20:953–959, 1997.

    PubMed  CAS  Google Scholar 

  33. Cosio FG, Lopez Gil M, Arribas F, Goicolea A: Radiofrequency catheter ablation for the treatment of human type 1 atrial flutter. Circulation 88:804–805, 1993.

    PubMed  CAS  Google Scholar 

  34. Cosio FG, Arribas F, Lopez-Gil M, Palacios J: Radiofrequency catheter ablation of atrial flutter circuits. Arch Mal Coeur Vaiss 89 dSpec No 1:75–81, 1996.

    Google Scholar 

  35. Saxon LA, Kaiman JM, Olgin JE, et al.: Results of radiofrequency catheter ablation for atrial flutter. Am J Cardiol 77:1014–1016, 1996.

    PubMed  CAS  Google Scholar 

  36. Haissaguerre M, Shah DC, Jais P, Clementy J: Role of catheter ablation for atrial fibrillation. Curr Opin Cardiol 12:18–23, 1997.

    PubMed  CAS  Google Scholar 

  37. Haissaguerre M, Jais P, Shah DC, et al.: Right and left atrial radiofrequency catheter therapy of paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 7:1132–1144, 1996.

    PubMed  CAS  Google Scholar 

  38. Haissaguerre M, Jais P, Shah DC, et al.: Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666, 1998.

    PubMed  CAS  Google Scholar 

  39. Zipes DP, DiMarco JP, Gillette PC, et al.: Guidelines for clinical intracardiac electrophysiological and catheter ablation procedures. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Clinical Intracardiac Electrophysiologic and Catheter Ablation Procedures), developed in collaboration with the North American Society of Pacing and Electrophysiology. J Am Coll Cardiol 26:555–573, 1995.

    PubMed  CAS  Google Scholar 

  40. Sung RJ, Waxman HL, Saksena S, Juma Z: Sequence of retrograde atrial activation in patients with dual atrioventricular nodal pathways. Circulation 64:1059–1067, 1981.

    PubMed  CAS  Google Scholar 

  41. Streets JLRM, Ben-Haim SA, Rodriguez LM, et al.: New method for non-fluoroscopic endocardial mapping in humans. Accuracy assessment and first clinical results. Circulation 97:2426–2432, 1998.

    Google Scholar 

  42. Schilling RJ, Peters NS, Davies W: Simultaneous endocardial mapping in the human left ventricle using a non-contact catheter. Comparison of contact and reconstructed electrograms during sinus rhythm. Circulation 98:887–898, 1998.

    PubMed  CAS  Google Scholar 

  43. Haissaguerre M, Gaita F, Fischer B, et al.: Elimination of atrioventricular nodal reentrant tachycardia using discrete slow potentials to guide application of radiofrequency energy. Circulation 85:2162–2175, 1992.

    PubMed  CAS  Google Scholar 

  44. Kuo CT, Lauer MR, Young C, et al.: Electrophysiologic significance of discrete slow potentials in dual atrioventricular node physiology: implications for selective radiofrequency ablation of slow pathway conduction. Am Heart J 131:490–498, 1996.

    Google Scholar 

  45. Heald SC, Davies DW, Ward DE, et al.: Radiofrequency catheter ablation of Mahaim tachycardia by targeting Mahaim potentials at the tricuspid annulus. Br Heart J 73:250–257, 1995.

    PubMed  CAS  Google Scholar 

  46. Mounsey JP, Griffith MJ, McComb JM: Radiofrequency ablation of a Mahaim fiber following localization of Mahaim pathway potentials. J Cardiovasc Electrophysiol 5:432–437, 1994.

    PubMed  CAS  Google Scholar 

  47. Jackman WM, Friday KJ, Yeung-Lai-Wah JA, et al.: New catheter technique for recording left free-wall accessory atrioventricular pathway activation. Identification of pathway fiber orientation. Circulation 78:598–611, 1988.

    PubMed  CAS  Google Scholar 

  48. Niebauer MJ, Daoud E, Goyal R, et al.: Assessment of pacing maneuvers used to validate anterograde accessory pathway potentials. J Cardiovasc Electrophysiol 6:350–356, 1995.

    PubMed  CAS  Google Scholar 

  49. Simmers TA, Hauer RN, Wever EF, et al.: Unipolar electrogram models for prediction of outcome in radiofrequency ablation of accessory pathways. Pacing Clin Electrophysiol 17:186–198, 1994.

    PubMed  CAS  Google Scholar 

  50. Tai YT, Lee KL, Lau CP: Catheter induced mechanical stunning of accessory pathway conduction: use ful guide to successful transcatheter ablation of accessory pathways. Pacing Clin Electrophysiol 17:31–36, 1994.

    PubMed  CAS  Google Scholar 

  51. Nogami A, Naito S, Tada H, et al.: Verapamil-sensitive left anterior fascicular ventricular tachycardia: results of radiofrequency ablation in six patients. J Cardiovasc Electrophysiol 9:1269–1278, 1998.

    PubMed  CAS  Google Scholar 

  52. Stevenson WG, Weiss JN, Wiener I, et al.: Fractionated endocardial electrograms are associated with slow conduction in humans: evidence from pace-mapping. J Am Coll Cardiol 13:369–376, 1989.

    PubMed  CAS  Google Scholar 

  53. Josephson ME, Wit AL: Fractionated electrical activity and continuous electrical activity: fact or artifact? Circulation 70:529–532, 1984.

    PubMed  CAS  Google Scholar 

  54. Ideker RE, Lofland GK, Bardy GH, et al.: Late fractionated potentials and continuous electrical activity caused by electrode motion. Pacing Clin Electrophysiol 6:908–914, 1983.

    PubMed  CAS  Google Scholar 

  55. Kadish AH, Rosenthal ME, Vassallo JA, et al.: Sinus mapping in patients with cardiac arrest and coronary disease—results and correlation with outcome. Pacing Clin Electrophysiol 12:301–310, 1989.

    PubMed  CAS  Google Scholar 

  56. de Bakker JM, van Capelle FJ, Janse MJ, et al.: Fractionated electrograms in dilated cardiomyopathy: origin and relation to abnormal conduction. J Am Coll Cardiol 27:1071–1078, 1996.

    PubMed  Google Scholar 

  57. Fitzgerald DM, Friday KJ, Wah JA, et al.: Electrogram patterns predicting successful catheter ablation of ventricular tachycardia. Circulation 77:806–814, 1988.

    PubMed  CAS  Google Scholar 

  58. Sosa E, Scanavacca M, D’Avila A, et al.: Endocardial and epicardial ablation guided by nonsurgical transthoracic epicardial mapping to treat recurrent ventricular tachycardia. J Cardiovasc Electrophysiol 9:229–239, 1998.

    PubMed  CAS  Google Scholar 

  59. Strickberger SA, Man KC, Daoud EG, et al.: A prospective evaluation of catheter ablation of ventricular tachycardia as adjuvant therapy in patients with coronary artery disease and an implantable cardioverter-defibrillator. Circulation 96:1525–1531, 1997.

    PubMed  CAS  Google Scholar 

  60. Jadonath RL, Snow JS, Goldner BG, Cohen TJ: Radiofrequency catheter ablation as primary therapy for symptomatic ventricular tachycardia. J Invasive Cardiol 6:289–295, 1994.

    PubMed  CAS  Google Scholar 

  61. Stevenson WG, Khan H, Sager P, et al.: Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation 88:1647–1670, 1993.

    PubMed  CAS  Google Scholar 

  62. Stevenson WG: Functional approach to site-by-site catheter mapping of ventricular reentry circuits in chronic infarctions. J Electrocardiol 27 Suppl:130–138, 1994.

    PubMed  Google Scholar 

  63. Khan HH, Stevenson WG: Activation times in and adjacent to reentry circuits during entrainment: implications for mapping ventricular tachycardia. Am Heart J 127:833–842, 1994.

    PubMed  CAS  Google Scholar 

  64. Stevenson WG, Sager PT, Friedman PL: Entrainment techniques for mapping atrial and ventricular tachycardias. J Cardiovasc Electrophysiol 6:201–216, 1995.

    PubMed  CAS  Google Scholar 

  65. MacLean WA, Plumb VJ, Waldo AL: Transient entrainment and interruption of ventricular tachycardia. Pacing Clin Electrophysiol 4:358–366, 1981.

    PubMed  CAS  Google Scholar 

  66. Kay GN, Epstein AE, Plumb VJ: Incidence of reentry with an excitable gap in ventricular tachycardia: a prospective evaluation utilizing transient entrainment. J Am Coll Cardiol 11:530–538, 1988.

    PubMed  CAS  Google Scholar 

  67. Brugada P, Wellens HJ: Entrainment as an electrophysiologic phenomenon. J Am Coll Cardiol 3:451–454, 1984.

    PubMed  CAS  Google Scholar 

  68. Waldo AL, Plumb VJ, Arciniegas JG, et al.: Transient entrainment and interruption of the atrioventricular bypass pathway type of paroxysmal atrial tachycardia. A model for understanding and identifying reentrant arrhythmias. Circulation 67:73–83, 1983.

    PubMed  CAS  Google Scholar 

  69. Okumura K, Henthorn RW, Epstein AE, et al.: Further observations on transient entrainment: importance of pacing site and properties of the components of the reentry circuit. Circulation 72:1293–1307, 1985.

    PubMed  CAS  Google Scholar 

  70. Okumura K, Olshansky B, Henthorn RW, et al.: Demonstration of the presence of slow conduction during sustained ventricular tachycardia in man: use of transient entrainment of the tachycardia. Circulation 75:369–378, 1987.

    PubMed  CAS  Google Scholar 

  71. Henthorn RW, Okumura K, Olshansky B, et al.: A fourth criterion for transient entrainment: the electrogram equivalent of progressive fusion. Circulation 77:1003–1012, 1988.

    PubMed  CAS  Google Scholar 

  72. McLean A: The Bovie electrosurgical current generator. Arch Surg 18:1863–1873, 1929.

    Google Scholar 

  73. Huang SK, Bharati S, Lev M, Marcus FI: Electrophysiologic and histologic observations of chronic atrioventricular block induced by closed-chest catheter desiccation with radiofrequency energy. Pacing Clin Electrophysiol 10:805–816, 1987.

    PubMed  CAS  Google Scholar 

  74. Langberg JJ, Chin MC, Rosenqvist M, et al.: Catheter ablation of the atrioventricular junction with radiofrequency energy. Circulation 80:1527–1535, 1989.

    PubMed  CAS  Google Scholar 

  75. Langberg JJ, Desai J, Dullet N, Scheinman MM: Treatment of macroreentrant ventricular tachycardia with radiofrequency ablation of the right bundle branch. Am J Cardiol 63:1010–1013, 1989.

    PubMed  CAS  Google Scholar 

  76. Langberg J, Griffin JC, Herre JM, et al.: Catheter ablation of accessory pathways using radiofrequency energy in the canine coronary sinus. J Am Coll Cardiol 13:491–496, 1989.

    PubMed  CAS  Google Scholar 

  77. Jackman WM, Wang XZ, Friday KJ, et al.: Catheter ablation of atrioventricular junction using radiofrequency current in 17 patients. Comparison of standard and large-tip catheter electrodes. Circulation 83:1562–1576, 1991.

    PubMed  CAS  Google Scholar 

  78. Jackman WM, Wang X, Friday KJ, et al.: Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. New Engl J Med 324:1605–1611, 1991.

    PubMed  CAS  Google Scholar 

  79. Haines DE, Watson DD: Tissue heating during radiofrequency catheter ablation: a thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall. Pacing Clin Electrophysiol 12:962–976, 1989.

    PubMed  CAS  Google Scholar 

  80. Haines DE: Determinants of lesion size during radiofrequency catheter ablation: the role of electrodetissue contact pressure and duration of energy delivery. J Cardiovasc Electrophysiol 2:509–515, 1991.

    Google Scholar 

  81. Ruffy R, Imran MA, Santel DJ, Wharton JM: Radiofrequency delivery through a cooled catheter tip al lows the creation of larger endomyocardial lesions in the ovine heart. J Cardiovasc Electrophysiol 6:1089–1096, 1995.

    PubMed  CAS  Google Scholar 

  82. Nakagawa H, Wittkampf FH, Yamanashi WS, et al.: Inverse relationship between electrode size and lesion size during radiofrequency ablation with active electrode cooling. Circulation 98:458–465, 1998.

    PubMed  CAS  Google Scholar 

  83. Nakagawa H, Yamanashi WS, Pitha JV, et al.: Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation 91:2264–2273, 1995.

    PubMed  CAS  Google Scholar 

  84. Chang RJ, Stevenson WG, Saxon LA, Parker J: Increasing catheter ablation lesion size by simultaneous application of radiofrequency current to two adjacent sites. Am Heart J 125:1276–1284, 1993.

    PubMed  CAS  Google Scholar 

  85. Haines DE, Watson DD, Verow AF: Electrode radius predicts lesion radius during radiofrequency energy heating. Validation of a proposed thermodynamic model. Circ Res 67:124–129, 1990.

    PubMed  CAS  Google Scholar 

  86. Langberg JJ, Gallagher M, Strickberger SA, Amirana O: Temperature-guided radiofrequency catheter ablation with very large distal electrodes. Circulation 88:245–249, 1993.

    PubMed  CAS  Google Scholar 

  87. Langberg JJ, Lee MA, Chin MC, Rosenqvist M: Radiofrequency catheter ablation: the effect of electrode size on lesion volume in vivo. Pacing Clin Electrophysiol 13:1242–1248, 1990.

    PubMed  CAS  Google Scholar 

  88. Wittkampf FH, Hauer RN, Robles de Medina EO: Control of radiofrequency lesion size by power regulation. Circulation 80:962–968, 1989.

    PubMed  CAS  Google Scholar 

  89. Haines DE, Verow AF: Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium. Circulation 82:1034–1038, 1990.

    PubMed  CAS  Google Scholar 

  90. Hindricks G, Haverkamp W, Gulker H, et al.: Radiofrequency coagulation of ventricular myocardium: improved prediction of lesion size by monitoring catheter tip temperature. Eur Heart J 10:972–984, 1989.

    PubMed  CAS  Google Scholar 

  91. Langberg JJ, Calkins H, el-Atassi R, et al.: Temperature monitoring during radiofrequency catheter ablation of accessory pathways. Circulation 86:1469–1474, 1992.

    PubMed  CAS  Google Scholar 

  92. Whayne JG, Nath S, Haines DE: Microwave catheter ablation of myocardium in vitro. Assessment of the characteristics of tissue heating and injury. Circulation 89:2390–2395, 1994.

    PubMed  CAS  Google Scholar 

  93. Huang SK, Graham AR, Wharton K: Radiofrequency catheter ablation of the left and right ventricles: anatomic and electrophysiologic observations. Pacing Clin Electrophysiol 11:449–459, 1988.

    PubMed  CAS  Google Scholar 

  94. Huang SK, Graham AR, Bharati S, et al.: Short-and long-term effects of transcatheter ablation of the coronary sinus by radiofrequency energy. Circulation 78:416–427, 1988.

    PubMed  CAS  Google Scholar 

  95. Saul JP, Hulse JE, Papagiannis J, et al.: Late enlargement of radiofrequency lesions in infant lambs. Implications for ablation procedures in small children. Circulation 90:492–499, 1994.

    PubMed  CAS  Google Scholar 

  96. Nath S, Lynch CD, Whayne JG, Haines DE: Cellular electrophysiological effects of hyperthermia on isolated guinea pig papillary muscle. Implications for catheter ablation. Circulation 88:1826–1831, 1993.

    PubMed  CAS  Google Scholar 

  97. Nath S, Whayne JG, Kaul S, et al.: Effects of radiofrequency catheter ablation on regional myocardial blood flow. Possible mechanism for late electrophysiological outcome. Circulation 89:2667–2672, 1994.

    PubMed  CAS  Google Scholar 

  98. Stein KM, Lerman BB: Delayed success following radiofrequency catheter ablation. Pacing Clin Electrophysiol 16:698–701, 1993.

    PubMed  CAS  Google Scholar 

  99. Langberg JJ, Borganelli SM, Kalbfleisch SJ, et al.: Delayed effects of radiofrequency energy on accessory atrioventricular connections. Pacing Clin Electrophysiol 16:1001–1005, 1993.

    PubMed  CAS  Google Scholar 

  100. Horowitz LN: Safety of electrophysiologic studies. Circulation 73:11–28, 1986.

    Google Scholar 

  101. Horowitz LN, Kay HR, Kutalek SP, et al.: Risks and complications of clinical cardiac electrophysiologic studies: a prospective analysis of 1,000 consecutive patients. J Am Coll Cardiol 9:1261–1268, 1987.

    PubMed  CAS  Google Scholar 

  102. Scheinman MM: Catheter ablation for cardiac arrhythmias, personnel, and facilities. North American Society of Pacing and Electrophysiology Ad Hoc Committee on Catheter Ablation. Pacing Clin Electrophysiol 15:715–721, 1992.

    PubMed  CAS  Google Scholar 

  103. Ross J: Considerations regarding the technique for transseptal left heart catheterization. Circulation 34:391–399, 1966.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sung, R.J., Lauer, M.R. (2000). Principles of Electrode Catheter Ablation. In: Fundamental Approaches to the Management of Cardiac Arrhythmias. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4371-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4371-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5879-7

  • Online ISBN: 978-94-011-4371-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics