Skip to main content

Role of Oxidative Stress, Cytokines, and Apoptosis in Myocardial Dysfunction

  • Chapter
Antioxidants and Cardiovascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 233))

  • 127 Accesses

Abstract

The myocardium is highly metabolically active and rich in reactive oxygen and nitrogen species. Reactive oxygen species (ROS), a byproduct of aerobic metabolism, are handled in the myocardium by soluble and enzymatic antioxidant systems. Oxidative stress can result from abnormally high levels of ROS production or insufficient antioxidant defenses. When the production of ROS exceeds the capacity of antioxidant defense systems, there is an increase in ‘oxidative stress’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohn, J. N. New concepts regarding events that lead to end-stage heart disease. Cardiovasc Drugs Ther 1995; 9 Suppl 3:489–92.

    Google Scholar 

  2. Anversa, P., Olivetti, G. and Capasso, J. M. Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol 1991; 68:7D–16D.

    PubMed  CAS  Google Scholar 

  3. Mann, D. L., and Young, J. B. Basic mechanism in congestive heart failure. Recognizing the role of proinflammatory cytokines. Chest 1994; 105: 897–904.

    PubMed  CAS  Google Scholar 

  4. Mann, D. L., Kent, R. L., Parsons, B. and Cooper, G. Adrenergic effects of the biology of the adult mammalian cardiocyte. Circulation 1992; 85:790–804.

    PubMed  CAS  Google Scholar 

  5. Ohta, K., Kim, S., Wanibuchi, H., Ganten, D. and Iwao, H. Contribution of local renin-angiotensin system to cardiac hypertrophy, phenotypic modulation, and remodeling in TGR (mRen2)27 transgenic rats. Circulation 1996; 94:785–91.

    PubMed  CAS  Google Scholar 

  6. Colucci, W. S. and Braunwald, E.. Pathophysiology of Heart Failure. In: Braunwald, E. editor. Heart Disease. W.B. Saunders Co. Philadelphia. 1995; 394–420.

    Google Scholar 

  7. Gerdes, A. M., Liu, Z., and Zimmer, H. G. Changes in nuclear size of cardiac myocytes during the development and progression of hypertrophy in rats. Cardioscience. 1994; 5:203–8.

    PubMed  CAS  Google Scholar 

  8. Olivetti, G., Capasso, J. M., Sonnenblick, E. H., and Anversa, P. Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Cire Res 1990; 67:23–34.

    CAS  Google Scholar 

  9. MacLellan, W. R. and Schneider, M. D. Death by Design. Programmed cell death in cardiovascular biology and disease. Circ Res 1997; 81:137–44.

    PubMed  CAS  Google Scholar 

  10. Weber, K. T., Anversa, P. Armstrong, P. W. et al. Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 1992; 20:3–16.

    PubMed  CAS  Google Scholar 

  11. Litwin, S. E. and Bridge, J. H. Enhanced Na(+)-Ca2+ exchange in the infarcted heart. Implications for excitation-contraction coupling. Circ Res 1997; 81:1083–93.

    PubMed  CAS  Google Scholar 

  12. Assem, M., Teyssier, J. R., Benderitter, M. et al. Pattern of superoxide dismutase enzymatic activity and RNA changes in rat heart ventricles after myocardial infarction. Am J Pathol 1997; 151:549–55.

    PubMed  CAS  Google Scholar 

  13. Carlsson, L. M., Jonsson, J., Edlund, T. and Marklund, S. L. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci U. S. A. 1995; 92:6264–8.

    PubMed  CAS  Google Scholar 

  14. Li, Y., Huang, T., Carlson, E. J., et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genetics 1995; 11:376–81.

    PubMed  CAS  Google Scholar 

  15. Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G. and Hoekstra, W. G. Selenium: biochemical role as a component of glutathione peroxidase. Science 1973; 179:588–90.

    PubMed  CAS  Google Scholar 

  16. Wu, J. and Xu, G. L. Plasma selenium content, platelet glutathione peroxidase and superoxide dismutase activity of residents in Kashin-Beck disease affected area in China. J Trace Elem Electrolytes. Health Dis. 1987; 1:39–43.

    PubMed  CAS  Google Scholar 

  17. Beck, M. A., Shi, Q., Morris, V. C. and Levander, O. A. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat Med 1995; 1:433–6.

    PubMed  CAS  Google Scholar 

  18. Beck, M. A., Kolbeck, P. C., Rohr, L. H., Shi, Q., Morris, V. C. and Levander, O. A. Benign human enterovirus becomes virulent in selenium-deficient mice. J Med Virol 1994; 43:166–70.

    PubMed  CAS  Google Scholar 

  19. Kavanaugh-McHugh, A. L., Ruff, A., Perlman, E., Hutton, N., Modlin, J. and Rowe, S. Selenium deficiency and cardiomyopathy in acquired immunodeficiency syndrome. JPEN J Parenter Enteral Nutr 1991; 15:347–9.

    PubMed  CAS  Google Scholar 

  20. Yamashita, N., Nishida, M., Hoshida, S., et al. Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning. J Clin Invest 1994; 94:2193–9.

    PubMed  CAS  Google Scholar 

  21. Hill, M. F. and Singal, P. K. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 1996; 148:291–300.

    PubMed  CAS  Google Scholar 

  22. Dhalla, A. K. and Singal, P. K. Antioxidant changes in hypertrophied and failing guinea pig hearts. Am J Physiol 1994; 266: H1280–5.

    PubMed  CAS  Google Scholar 

  23. Ushio-Fukai, M., Zafari, A. M., Fukui, T., Ishizaka, N., and Griendling, K. K. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J. Biol. Chem. 1996; 271:23317–21.

    PubMed  CAS  Google Scholar 

  24. Irani, K., Xia, Y., Zweier, J. L., et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 1997; 275:1649–52.

    PubMed  CAS  Google Scholar 

  25. Siwik, D. A., Tzortzis, J. D., Pimentel, D. R., et al. Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype and apoptosis in neonatal rat cardiac myocytes in vitro.. Cire Res 1999; 85:147–53

    CAS  Google Scholar 

  26. Calderone, A., Takahashi, N., Izzo, Jr., N. J., Thaik, C. M. and Colucci, W. S. Pressure-and volume-induced left ventricular hypertrophies are associated with distinct myocyte phenotypes and differential induction of peptide growth factor mRNAs. Circulation 1995; 92:2385–90.

    PubMed  CAS  Google Scholar 

  27. von Harsdorf, R., Li, P. F. and Dietz, R.. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999; 99:2934–41.

    Google Scholar 

  28. Cheng, W., Li, B., Kajstura, J. et al. Stretch-induced programmed myocyte cell death. J Clin Invest 1995; 96:2247–59.

    PubMed  CAS  Google Scholar 

  29. Pimentel, D. R., Amin, J. K., Baliga, R. R. et al. Reactive oxygen species mediate hypertrophy and apoptosis in cyclically-stretched cardiac myocytes. Circulation 1998; 98:1–743(Abstr.).

    Google Scholar 

  30. Faulkner, K. M., Liochev, S. I., and Fridovich, I. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J Biol Chem 1994; 269:23471–6.

    PubMed  CAS  Google Scholar 

  31. Nakamura, K., Fushimi, K., Kouchi, H., et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998; 98:794–9.

    PubMed  CAS  Google Scholar 

  32. Reed, J. C. Cytochrome c: can’t live with it--can’t live without it. Cell 1997; 91:559–62.

    PubMed  CAS  Google Scholar 

  33. Kojima, H., Endo, K., Moriyama, H., et al. Abrogation of mitochondrial cytochrome c release and caspase-3 activation in acquired multidrug resistance. J Biol Chen 1998; 273:16647–50.

    CAS  Google Scholar 

  34. Jurgensmeier, J. M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D. and Reed, J. C. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci 1998; 95:4997–5002.

    PubMed  CAS  Google Scholar 

  35. Reed, J. C. Double identity for proteins of the Bel-2 family. Nature 1997; 387:773–6.

    PubMed  CAS  Google Scholar 

  36. Rosse, T., Olivier, R., Monney, L. et al. Bel-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 1998; 391:496–9.

    PubMed  CAS  Google Scholar 

  37. Narita, M., Shimizu, S., Ito, T., et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci 1998; 95:14681–6.

    PubMed  CAS  Google Scholar 

  38. Vander Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacker, P. T. and Thompson, C. B. Bel-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 1997; 91:627–37.

    Google Scholar 

  39. Sugden, P. H. and Clerk, A. “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Cire Res 1998; 83:345–52.

    CAS  Google Scholar 

  40. Singh, K., Balligand, J. L., Fischer, T. A., Smith, T. W. and Kelly, R. A. Regulation of cytokine-inducible nitric oxide synthase in cardiac myocytes and microvascular endothelial cells. Role of extracellular signal-regulated kinases I and 2 (ERKI/ERK2) and STAT1 alpha. J Biol Chem 1996; 271:1111–7.

    PubMed  CAS  Google Scholar 

  41. Jiang, Y., Gram, H., Zhao, M., et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p28. J Biol Chem 1997; 272:30122–8.

    PubMed  CAS  Google Scholar 

  42. Wang, Y., Su, B., Sah, V. P., Brown, J. H., Han, J. and Chien, K. R. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem 1998; 273:5423–6.

    PubMed  CAS  Google Scholar 

  43. Wang, Y., Huang, S., Sah, V. P., et al. Cardiac muscle hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 1998; 273:2161–8.

    PubMed  CAS  Google Scholar 

  44. Fischer, T. A., Ludwig, A., Singh, K., et al. Mechanical load induces stress-regulated mitogenactivated protein kinases (JNK-1/p38) in acute pressure overload in rat heart. Circulation 1998; 98:1119(Abstr.).

    Google Scholar 

  45. Clerk, A., Michael, A., and Sugden, P. H. Stimulation of multiple mitogen-activated protein kinase sub-families by oxidative stress and phosphorylation of the small heat shock protein, HSP25/27, in neonatal ventricular myocytes. Biochem J 1998; 333:581–9.

    PubMed  CAS  Google Scholar 

  46. Clerk, A., Fuller, S. J., Michael, A. and Sugden, P. H. Stimulation of “stress-regulated” mitogenactivated protein kinases (Stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogenactivated protein kinases) in perfused rat hearts by oxidative and other stresses. J Biol Chem 1998; 273:7228–34.

    PubMed  CAS  Google Scholar 

  47. Lander, H. M., Ogiste, J. S., Teng, K. K. and Novogrodsky, A. p21ras as a common signaling target of reactive free radicals and cellular redox stress. J Biol Chem 1995; 270:21195–8.

    PubMed  CAS  Google Scholar 

  48. Turner, N. A., Xia, F., Azhar, G., Zhang, X., Liu, L. and Wei, J. Y. Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol 1998; 30:1789–801.

    PubMed  CAS  Google Scholar 

  49. Yue, T. L., Ma, X. L., Gu, J. L., Ruffolo, Jr., R. R., and Feuerstein, G. Z. Carvedilol inhibits activation of stress-activated protein kinase and reduces reperfusion injury in perfused rabbit heart. Eur J Pharmacol 1998; 345:61–5.

    PubMed  CAS  Google Scholar 

  50. Nathan, C. Natural resistance and nitric oxide. Cell 1995; 82:873–6.

    PubMed  CAS  Google Scholar 

  51. Stamler, J. S., Simon, D. I., Osborne, J. A., et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci 1992; 89:444–8.

    PubMed  CAS  Google Scholar 

  52. Michel, J. B., Feron, O., Sacks, D., and Michel, T. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+- calmodulin and caveolin. J Biol Chem 1997; 272:15583–6.

    PubMed  CAS  Google Scholar 

  53. Pinsky, D. J., Patton, S., Mesaros, S., et al. Mechanical transduction of nitric oxide synthesis in the beating heart. Circ Res 1997; 81:372–9.

    PubMed  CAS  Google Scholar 

  54. Mannick, J. B., Miao, X. Q., and Stamler, J. S. Nitric oxide inhibits Fas-induced apoptosis. J Biol Chem 1997; 272:24125–8.

    PubMed  CAS  Google Scholar 

  55. Macmicking, J. D., North, R. J., LaCourse, R., Mudgett, J. S., Shah, S. K. and Nathan, C. F. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci 1997; 94:5243–8.

    PubMed  CAS  Google Scholar 

  56. Wheeler, M. A., Smith, S. D., Garcia-Cardena, G., Nathan, C. F., Weiss, R. M., and W. C. Sessa. Bacterial infection induces nitric oxide synthase in human neutrophils. J Clin Invest 1997; 99:110–6.

    PubMed  CAS  Google Scholar 

  57. Xia, Y. and Zweier, J. L.. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proc Natl Acad Sci 1997; 94:6954–8.

    PubMed  CAS  Google Scholar 

  58. Xie, Y. W., Shen, W., Zhao, G., Xu, X., Wolin, M. S., and Hintze, T. H. Role of endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Implications for the development of heart failure. Circ Res 1997; 79:381–7.

    Google Scholar 

  59. Beckman, J. S. and Koppenol, W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1997; 271:C1424–37.

    Google Scholar 

  60. Ischiropoulos, H., Zhu, L., Chen, J. et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 1992; 298:431–7.

    PubMed  CAS  Google Scholar 

  61. Pinsky, D. J., Cai, B., Yang, X., Rodriguez, C., Sciacca, R. R., and Cannon, P. J. The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor ß. J Clin Invest 1995; 95:677–85.

    PubMed  CAS  Google Scholar 

  62. Ing, D. J., Zang, J., Dzau, V. J., Webster, K. A. and Bishopric, N. H. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bel-x. Circ Res 1999; 84:21–33.

    PubMed  CAS  Google Scholar 

  63. Izumi, T., Suzuki, K., Saeki, M., et al. An ultrastructural study on experimental autoimmune myocarditis with special reference to effector cells. Eur Heart J 1995; 16 Suppl O:75–7:75–77.

    Google Scholar 

  64. Ishiyama, S., Hiroe, M., Nishikawa, T., et al. Nitric oxide contributes to the progression of myocardial damage in experimental autoimmune myocarditis in rats. Circulation 1997; 95:489–96.

    PubMed  CAS  Google Scholar 

  65. MacMillan-Crow, L. A., Crow, J. P., Kerby, J. D., Beckman, J. S., and Thompson, J. A. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci 1996; 93:11853–8.

    PubMed  CAS  Google Scholar 

  66. Mikami, S., Kawashima, S., Kanazawa, K., et al. Low-dose N omega-nitro-L-arginine methyl ester treatment improves survival rate and decreases myocardial injury in a murine model of viral myocarditis induced by coxsackievirus B3. Cire Res 1997; 81:504–11.

    CAS  Google Scholar 

  67. Finkel, M. S., Oddis, C. V., Jacob, T. D., Watkins, S. C., Rattler, B. G., and Simmons, R. L. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 1992; 257:387–9.

    PubMed  CAS  Google Scholar 

  68. Brady, A. J., Warren, J. B., Poole-Wilson, P. A., Williams, T. J., and Harding, S. E. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 1993; 265:H176–H186.

    PubMed  CAS  Google Scholar 

  69. Pagani, F. D., Baker, L. S., Hsi, C., Knox, M., Fink, M. P., and Visner, M. S. Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs. J Clin Invest 1992; 90:389–98.

    PubMed  CAS  Google Scholar 

  70. Oddis, C. V. and Finkel, M. S. Cytokine-stimulated nitric oxide production inhibits mitochondrial activity in cardiac myocytes. Biochem Biophys Res Commun 1995; 213:1002–9.

    PubMed  CAS  Google Scholar 

  71. Campbell, D. L., Stamler, J. S. and H. C. Strauss.. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 1996; 108:277–93.

    PubMed  CAS  Google Scholar 

  72. Xu, L., Eu, J. P., Meissner, G., and Stamler, J. S. Activation of the cardiac calcium release channel (Ryanodine receptor) by poly-S-nitrosylation. Science 1998; 279:234–7.

    PubMed  CAS  Google Scholar 

  73. Vanden Hoek, T. L., Becker, L. B., Shao, Z., Li, C., and Schumacker, P. T. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 1998; 273:18092–8.

    Google Scholar 

  74. Kajstura, J., Liu, Y., Baldini, A., Li, B., Olivetti, G., Leri, A. and Anversa, P. Coronary artery constriction in rats: necrotic and apoptotic myocyte death. Am J Cardiol 1998; 82:30K–41K.

    PubMed  CAS  Google Scholar 

  75. Bialik, S., Geenen, D. L., Sasson, I. E., et al. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxie regions but occurs independently of p53. J Clin Invest 1997; 100:1363–72.

    PubMed  CAS  Google Scholar 

  76. Wang, P. and Zweier, J. L. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J Biol Chem 1996; 271:29223–30.

    PubMed  CAS  Google Scholar 

  77. Wang, P., Chen, H., Qin, H., et al. Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc Natl Acad Sci 1998; 95:4556–60.

    PubMed  CAS  Google Scholar 

  78. Chen, E. P., Bittner, H. B., Davis, R. D., Van Trigt, P., and Folz, R. J. Physiologic effects of extracellular superoxide dismutase transgene overexpression on myocardial function after ischemia and reperfusion injury. J Thorac Cardiovasc Surg 1998; 115:450–8; discussion 458–9.

    PubMed  CAS  Google Scholar 

  79. Chen, Z., Siu, B., Ho, Y. S., et al. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 1998; 30:2281–9.

    PubMed  CAS  Google Scholar 

  80. Nohl, H., Koltover, V., and Stolze, K. Ischemia/reperfusion impairs mitochondrial energy conservation and triggers 02.- release as a byproduct of respiration. Free Radie Res Commun 1993; 18:127–37.

    CAS  Google Scholar 

  81. Davies, K. J. and Doroshow, J. H. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 1986; 261:3060–7.

    PubMed  CAS  Google Scholar 

  82. Nohl, H. and Jordan, W. OH.-generation by adriamycin semiquinone and H2O2; an explanation for the cardiotoxicity of anthracycline antibiotics. Biochem Biophys Res Commun 1983; 114:197–205.

    PubMed  CAS  Google Scholar 

  83. Rajagopalan, S., Politi, P. M., Sinha, B. K. and Myers, C. E. Adriamycin-induced free radical formation in the perfused rat heart: implications for cardiotoxicity. Cancer Res. 1988; 48:4766–9.

    PubMed  CAS  Google Scholar 

  84. Buss, J. L. and Hasinoff, B. B. The one-ring open hydrolysis product intermediates of the cardioprotective agent ICRF-187 (dexrazoxane) displace iron from iron-anthracycline complexes. Agents Actions 1993; 40:86–95.

    PubMed  CAS  Google Scholar 

  85. Unverferth, D. V., Magorien, R. D., Unverferth, B. P., Talley, R. L., Balcerzak, S. P. and Baba, N. Human myocardial morphologic and functional changes in the first 24 hours after doxorubicin administration. Cancer Treat. Rep 1981; 65:1093–7.

    CAS  Google Scholar 

  86. Unverferth, B. J., Magorien, R. D., Balcerzak, S. P., Leier, C. V., and Unverferth, D. V. Early changes in human myocardial nuclei after doxorubicin. Cancer 1983; 52:215–21.

    PubMed  CAS  Google Scholar 

  87. Sawyer, D. B., Fukazawa, R., Arstall, M. A., and Kelly, R. A. Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Cire Res 1999; 84:257–65.

    CAS  Google Scholar 

  88. Sarvazyan, N. Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. Am J Physiol 1996; 271:H2079–85.

    PubMed  CAS  Google Scholar 

  89. Yen, H. C., Oberley, T. D., Vichitbandha, S., Ho, Y. S., and St Clair, D. K. The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest 1996; 98:1253–60.

    PubMed  CAS  Google Scholar 

  90. Ghatak, A., Brar, M. J., Agarwal, A. et al. Oxy free radical system in heart failure and therapeutic role of oral vitamin E. Int J Cardiol 1996; 57:119–27.

    CAS  Google Scholar 

  91. Diaz-Velez, C. R., Garcia-Castineiras, S., Mendoza-Ramos, E., and Hernandez-Lopez, E. Increased malondialdehyde in peripheral blood of patients with congestive heart failure. Am Heart J 1996; 131:146–52.

    PubMed  CAS  Google Scholar 

  92. Mallat, Z., Philip, I., Lebret, M., Chatel, D., Maclouf, J. and Tedgui, A. Elevated levels of 8-isoprostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 1998; 97:1536–9.

    PubMed  CAS  Google Scholar 

  93. Haywood, G. A., Tsao, P. S. von der Leyen, H. E., et al. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996; 93:1087–94.

    PubMed  CAS  Google Scholar 

  94. Habib, F. M., Springall, D. R., Davies, G. J., et al. Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 1996; 347:1151–5.

    PubMed  CAS  Google Scholar 

  95. Olivetti, G., Abbi, R., Quaini, F., et al. Apoptosis in the failing human heart. N Engl J Med 1997; 336:113141.

    Google Scholar 

  96. Dhalla, A. K., Hill, M. F., and Singal, P. K. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 1996; 28:506–14.

    PubMed  CAS  Google Scholar 

  97. Cheng, W., Kajstura, J., Nitahara, J. A. et al. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 1996; 226:316–27.

    PubMed  CAS  Google Scholar 

  98. Condorelli, G., Morisco, C., Stassi, G. et al. Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the Rat. Circulation 1999; 99:3071–8.

    PubMed  CAS  Google Scholar 

  99. MacGowan, G. A., Mann, D. L., Kormos, R. L., Feldman, A. M., and Murali, S. Circulating interleukin-6 in severe heart failure. Am J Cardiol 1997; 79:1128–31.

    PubMed  CAS  Google Scholar 

  100. Torre-Amione, G., Kapadia, S., Benedict, C., Oral, H., Young, J. B., and Mann, D. L. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 1996; 27:1201–6.

    PubMed  CAS  Google Scholar 

  101. Torre-Amione, G., Kapadia, S., Lee, J., et al. Tumor necrosis factor-α and tumor necrosis factor receptors in the failing human heart. Circulation 1996; 93:704–11.

    PubMed  CAS  Google Scholar 

  102. Cohn, J. N., Levine, T. B., Olivari, M. T., et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311:819–23.

    PubMed  CAS  Google Scholar 

  103. Roberts, A. B., Vodovotz, Y., Roche, N. S., Sporn, M. B., and Nathan, C. F. Role of nitric oxide in antagonistic effects of transforming growth factor-α and interleukin-1 on the beating rate of cultured cardiac myocytes. Molecular Endocrinology 1992; 6:1921–30.

    PubMed  CAS  Google Scholar 

  104. Meier, B., Radeke, H. H., Selle, S., et al. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumor necrosis factor-α. Biochem J 1989; 263:539–45.

    PubMed  CAS  Google Scholar 

  105. Balligand, J. L., Ungureanu-Longrois, D., Simmons, W. W., et al. Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem 1994; 269:27580–8.

    PubMed  CAS  Google Scholar 

  106. Balligand, J. L., Ungureanu-Longrois, D., Simmons, W. W., et al. Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-1 beta and IFN-gamma. Am J Physiol 1995; 268:H1293–303.

    PubMed  CAS  Google Scholar 

  107. Oddis, C. V., Simmons, R. L., Hattler, B. G., and Finkel, M. S. Chronotropic effets of cytokines and the nitric oxide synthase inhibitor, L-NMMA, on cardiac myocytes. Biochem Biophys Res Comm 1994; 205:992–7.

    PubMed  CAS  Google Scholar 

  108. Hill, M. F. and Singal, P. K. Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation 1997; 96:2414–20.

    PubMed  CAS  Google Scholar 

  109. Wildhirt, S. M., Dudek, R. R., Suzuki, H., and Bing, R. J. Involvement of inducible nitric oxide synthase in the inflammatory process of myocardial infarction. Int J Cardiol 1995; 50:253–61.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sawyer, D.B., Colucci, W.S. (2000). Role of Oxidative Stress, Cytokines, and Apoptosis in Myocardial Dysfunction. In: Tardif, JC., Bourassa, M.G. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 233. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4375-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4375-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5881-0

  • Online ISBN: 978-94-011-4375-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics