Skip to main content

Genetic manipulation of lipoxygenases for the agrifood industry

  • Chapter
Genetics and Breeding for Crop Quality and Resistance

Part of the book series: Developments in Plant Breeding ((DIPB,volume 8))

Abstract

Lipoxygenases (LOX) are a group of non-haem iron-containing enzymes that are widely distributed within Nature and can be found in algae, fungi, animals and plants. In animals they are recognized as catalyzing the first step on the pathway from arachidonic acid to leukotrienes, important compounds that mediate inflammatory and allergic responses. In plants, they were for a long time considered to be an enigma, but now have clearly-defined roles in defence reactions, may be involved in apoptosis, have a role in metabolic homeostasis and also influence the quality of foods in several ways. This article describes: the multiplicity of LOX in plants; the significance of such multiplicity in terms of generation of different fatty acid hydroperoxides; the various ways in which these hydroperoxides are metabolized; the ways in which we have attempted to manipulate the amounts of LOX in plants and what this has told us; and the consequent “balancing act” that needs to be performed, between our perceived requirements in terms of food quality and the requirements of plants in terms of growth, development and health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelrod, B. (1974) Lipoxygenases, American Chemical Society Advanced Chemistry Series 136, 324–348.

    CAS  Google Scholar 

  • Azelrol, B., Cheesbrough, T.M. & Lasko, S. (1981) Lipoxygenase from soybeans, Methods in Enzymology 71, 441–451.

    Article  Google Scholar 

  • Barro, F., Rooke, L., Bekes, F., Gras, P., Tatham, A.S., Fido, R., Lazzeri, P.A., Shewry, P.R. & Barcelo, P. (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties, Nature Biotechnology 15, 1295–1299.

    Article  PubMed  CAS  Google Scholar 

  • Bate, N.J., Sivasankar, S., Moxon, C., Riley, J.M.C., Thompson, J.E. & Rothstein, S.J. (1998) Molecular characterization of an Arabidopsis gene encoding hydroperoxide lyase, a cytochrome P-450 that is wound inducible, Plant Physiol. 117, 1393–1400.

    Article  PubMed  CAS  Google Scholar 

  • Bell, E., Creelman, R.A. & Mullet, J.E. (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis, Proceedings of the National Academy of Sciences USA 92, 8675–8679.

    Article  CAS  Google Scholar 

  • Bell, E. & Mullet, J.E. (1991) Lipoxygenase gene expression is modulated in plants by water deficit, wounding, and methyl jasmonate Molecular and General Genetics 230, 456–462.

    Article  CAS  Google Scholar 

  • Busto, M.D., Owusu-Apenten, R.K., Robinson, D.S., Wu, Z., Casey, R. & Hughes, R.K. (1998) Food Chemistry, in press.

    Google Scholar 

  • Buttery, R.G., Teranishi, R. & Ling, L.C. (1987) Fresh tomato aroma volatiles: a quantitative study, Journal of Agricultural and Food Chemistry 35, 540–544.

    Article  CAS  Google Scholar 

  • Casey, R., Domoney, C. & Nielsen, N.C. (1985) Isolation of a cDNA clone for pea (Pisum sativum) seed lipoxygenase Biochemical Journal 232, 79–85.

    CAS  Google Scholar 

  • Casey, R. (1998) Lipoxygenases in breadmaking, Proceedings of the 1st European Symposium on Enzymes and Grain Processing TNO, The Netherlands pp. 188–194.

    Google Scholar 

  • Croft, K.P.C., Jüttner, F. & Slusarenko, A.J. (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola Plant Physiology 101, 13–24.

    CAS  Google Scholar 

  • Davies, C.S., Nielsen, S.S. & Nielsen, N.C. (1987) Flavor improvement of soybean preparations by genetic removal of lipoxygenase-2, Journal of the American Oil Chemists’ Society 64, 1428–1433.

    Article  CAS  Google Scholar 

  • Domoney, C., Firmin, J.L., Sidebottom, C., Ealing, P.M., Slabas, A. & Casey, R. (1990) Lipoxygenase heterogeneity in Pisum sativum, Planta 181, 35–43.

    CAS  Google Scholar 

  • Domoney, C., Casey, R., Turner, L. & Ellis, N. (1991) Pisum lipoxygenase genes, Theoretical and Applied Genetics 81, 800–805.

    CAS  Google Scholar 

  • Ealing, P.M. & Casey, R. (1988) The complete amino acid sequence of a pea (Pisum sativum) seed lipoxygenase predicted from a near full-length cDNA, Biochemical Journal 253, 915–918.

    PubMed  CAS  Google Scholar 

  • Ealing, P.M. & Casey, R. (1989) The cDNA cloning of a pea (Pisum sativum) seed lipoxygenase. Sequence comparisons of the two major pea seed lipoxygenase isoforms, Biochemical Journal 264, 929–932.

    PubMed  CAS  Google Scholar 

  • Evans, D.E., Tsukamoto, C. & Nielsen, N.C. (1997) A small scale method for the production of soymilk and silken tofu, Crop Science, 37 1463–1471.

    Article  CAS  Google Scholar 

  • Farmer, E.E. & Ryan, C.A. (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors, The Plant Cell 4, 129–134.

    PubMed  CAS  Google Scholar 

  • Frazier, P.J. (1979) Lipoxygenase action and lipid binding in breadmaking, Bakers Digest 53, 8–29.

    CAS  Google Scholar 

  • Gardner, C.D., Sherrier, DJ., Kardailsky, I.V. & Brewin, N.J. (1996) Localization of lipoxygenase proteins and mRNA in pea nodules: identification of lipoxygenase in the lumen of infection threads, Molecular Plant-Microbe Interactions 9, 282–289.

    Article  CAS  Google Scholar 

  • Harms, K., Atzorn, R., Brash, A., Kuhn, H., Wasternack, C., Willmitzer, L. & Pena-Cortes, H. (1995) Expression of a flax allene oxide synthase cDNA leads to increased endogenous jasmonic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes, The Plant Cell 7, 1645–1654.

    PubMed  CAS  Google Scholar 

  • Hildebrand, D.F., Hamilton-Kemp, T.R., Longhrin, J.H., Ali, K. & Anderson, R.A. (1990) Lipoxygenase 3 reduces hexanal production from soybean seed homogenates, Journal of Agricultural and Food Chemistry 38, 1934–1936.

    Article  CAS  Google Scholar 

  • Hughes, R.K., Wu, Z., Robinson, D.S., Hardy, D., West, S.I., Fairhurst, S.A. & Casey, R. (1998) Characterization of authentic recombinant pea-seed lipoxygenases with distinct properties and reaction mechanisms, Biochemical Journal 333, 33–43.

    PubMed  CAS  Google Scholar 

  • Knust, B. & von Wettstein, D. (1992) Expression and secretion of pea-seed lipoxygenase isoenzymes in Saccharomyces cerevisiae, Applied Microbiology and Biotechnology 37, 342–351.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, K., Shibutani, M., Hase, T. & Kajiwara, T. (1996) Bell pepper fruit fatty acid hydroperoxide lyase is a cytochrome P450 (CYP74B), FEBS Letters 394, 21–24.

    Article  PubMed  CAS  Google Scholar 

  • North, H. (1990) Pea seed lipoxygenase variants, Ph.D. thesis, University of East Anglia, U.K.

    Google Scholar 

  • North, H., Casey, R. & Domoney, C. (1989) Inheritance and mapping of seed lipoxygenase polypeptides in Pisum, Theoretical and Applied Genetics 77, 805–808.

    Article  CAS  Google Scholar 

  • Pfeiffer, T.W., Hildebrand, D.R. & TeKrony, D.M. (1992) Agronomic performance of soybean lipoxygenase isolines, Crop Science 32, 357–362.

    Article  CAS  Google Scholar 

  • Rancé, L, Fournier, J. & Esquerré-Tugayé, M.-T. (1998) The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences, Proceedings of the National Academy of Sciences USA 95, 6554–6559.

    Article  Google Scholar 

  • Robinson, D.S., Wu, Z., Domoney, C. & Casey, R. (1995) Lipoxygenases and the quality of foods, Food Chemistry 54, 33–43.

    Article  CAS  Google Scholar 

  • Royo, J., Vancanneyt, G., Pérez, A.G., Sanz, C., Störmann, K., Rosahl, S. & Sanchez-Serrano, J.J. (1996) Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns, The Journal of Biological Chemistry 271, 21012–21019.

    Article  PubMed  CAS  Google Scholar 

  • Shewry, P.R. (1995) Plant storage proteins, Biological Reviews 70, 375–426

    Article  PubMed  CAS  Google Scholar 

  • Shiba, K., Negishi, Y., Okada, K. & Nagao, S. (1991) Purification and characterization of lipoxygenase isozymes from wheat germ, Cereal Chemistry 68, 115–122.

    Google Scholar 

  • Shimizu, T., RAdmark, O. & Samuelsson, B. (1984) Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid, Proceedings of the National Academy of Sciences USA 81, 689–693.

    Article  CAS  Google Scholar 

  • Song, W.-C., Funk, C.D. & Brash, A.R. (1993) Molecular cloning of an allene oxide synthase: A cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides, Proceedings of the National Academy of Sciences USA 90, 8519–8523.

    Article  CAS  Google Scholar 

  • Speirs, J., Lee, E., Holt, K., Yong-Duk, K., Scott, N.S., Loveys, B. & Schuch, W. (1998) Genetic manipulation of alcohol dehydrogenase levels in ripening fruit affects the balance of some flavor aldehydes and alcohols, Plant Physiology 117, 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson, L.C., Bunker, T.W., Dubbs, W.E. & Grimes, H.D. (1998) Specific soybean lipoxygenases localize to discrete subcellular compartments and their mRNAs are differentially regulated by sink-source status, Plant Physiology 116, 923–933.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, D.C. & Coudron, C.A. (1979) Identification of traumatin, a wound hormone, as 12-oxotrans-10-dodecanoic acid, Plant Physiology 63, 536–541.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Casey, R. (1999). Genetic manipulation of lipoxygenases for the agrifood industry. In: Mugnozza, G.T.S., Porceddu, E., Pagnotta, M.A. (eds) Genetics and Breeding for Crop Quality and Resistance. Developments in Plant Breeding, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4475-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4475-9_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5917-6

  • Online ISBN: 978-94-011-4475-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics