Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 529))

Abstract

Colloidal dispersions are made of “large” particles suspended in a solvent of “small” molecules (usually water). A particle can be considered as a colloid if its individual dynamics is essentially Brownian. Therefore, a colloidal particle must be large compared to the size of a solvent molecule, but not too massive in order to prevent fast sedimentation. Experimentally the size of these particles can range from 2nm to 1μm [1]. Although these boundaries are only indicative, as consequence it is possible to prepare mixtures of large and small colloidal particles with a diameter ratio of some few hundred, which is significantly different from usual atomic fluids. Another important, and more fundamental difference, is polydispersity in size and shape: in a colloidal suspension particles are not identical, and the width of the size distribution depends on the preparation process (some few percent in model systems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pusey, P.N., (1991) in “Liquids, Freezing and the Glass Transition”, Les Houches 1989 edited by J.P. Hansen, D. Levesque and J. Zinn-Justin, North Holland, Amsterdam.

    Google Scholar 

  2. Hansen, J.P. and Mc Donald,I.R.,(1986) “Theory of Simple Liquids”, 2nd edition, Academic Press, London.

    Google Scholar 

  3. Attard, P., and Patey, G.N., (1990) J. Chem. Phys. 92, 4970.

    Article  ADS  Google Scholar 

  4. Biben, T., and Hansen, J.P., (1991) Phys. Rev. Lett., 66, pp. 2215.

    Article  ADS  Google Scholar 

  5. Biben, T., and Hansen, J.P., (1991) J. Phys. Cond. Matter, 42 v 3, pp. F65.

    Article  Google Scholar 

  6. Caccamo, C., and Pelikane, G., (1997) Physica, A 235, pp. 149.

    ADS  Google Scholar 

  7. Piasecki, J., Docquet, L., and Hansen, J.P., (1995) Physica, A 218, pp. 125.

    ADS  Google Scholar 

  8. Fries, P. and Hansen, J.P., (1983) Molec. Phys., 48, pp. 891.

    Article  ADS  Google Scholar 

  9. Verwey, E.J.W. and Overbeek, J.T.G., (1948) “Theory of the Stability of Lyophobic Colloids”, Elsevier, Amsterdam.

    Google Scholar 

  10. Ito, K., Hiroshi H. and Ise N., (1994) Science 263, pp. 66

    Article  ADS  Google Scholar 

  11. Tata, B.V.R., Yamahara, E., Rajamani, P.V., and Ise, N., (1997) Phys. Rev. Lett. 78, pp. 2660.

    Article  ADS  Google Scholar 

  12. Tata, B.V.R., Rajalakshmi, M., and Arora, A.K., (1992) Phys. Rev. Lett. 69, pp. 3778

    Article  ADS  Google Scholar 

  13. Palberg, T., and Würth, M., (1994) Phys. Rev. Lett. 72, pp. 786.

    Article  ADS  Google Scholar 

  14. Van Roij, R., and Hansen, J.P., (1997) Phys. Rev. Lett. 79, pp. 3082.

    Article  ADS  Google Scholar 

  15. Löwen, H., Hansen, J.P., and Madden, P., (1992) Phys. Rev. Lett. 68, pp. 1081.

    Article  ADS  Google Scholar 

  16. Attard, P., (1989) J. Chem. Phys. 91, pp. 3072 and pp. 3083.

    Article  ADS  Google Scholar 

  17. Biben, T., Bladon, P., and Frenkel, D., (1996) J. Phys. Cond. Matter 8, pp. 10799.

    Article  ADS  Google Scholar 

  18. Horn, R. G., and Israelachvili, J. N., (1981).J. Chem. Phys. 75, pp. 1400.

    Article  ADS  Google Scholar 

  19. Azakura, S., and Oosawa, F., (1958).J. Pol. Sci. 33, 183.

    Article  ADS  Google Scholar 

  20. Gazzillo, D., (1991).J. Chem. Phys. 95, pp. 4565, and references therein.

    Article  ADS  Google Scholar 

  21. Ornstein, L.S., and Zernike, (1914) F., Prok. Akad. Sci. (Amsterdam) 17, pp. 793.

    Google Scholar 

  22. Percus, S.K., and Yevick, G.J., (1958) Phys. Rev. 110, pp. 1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Rogers, F.J., and Young, D.A., (1984) Phys. Rev. A 30, pp. 999.

    ADS  Google Scholar 

  24. P. Ballone, P., Pastore, G., Galli, Gazzillo G., and Gazzillo, D., (1986) Molec. Phys. 59, pp. 275.

    Article  ADS  Google Scholar 

  25. Biben, T., (1993) PHD thesis, Universté Claude Bernard-Lyon I, France.

    Google Scholar 

  26. Biben, T., and Hansen, J.P., (1990) Europhys. Lett. 12 pp. 347.

    Article  ADS  Google Scholar 

  27. Heno, Y., and Regnaut, C., (1991) J.Chem.Phys. 95, pp. 9204.

    Article  ADS  Google Scholar 

  28. Baxter, R.J., (1968) J. Chem. Phys. 49, pp. 2770.

    Article  ADS  Google Scholar 

  29. Lebowitz, J.L., (1964) Phys. Rev. A 133, pp. 895.

    Article  MathSciNet  ADS  Google Scholar 

  30. Lebowitz, J.L., and Rowlinson, J.S., (1964) J. Chem. Phys. bf 41, pp. 133.

    Article  ADS  Google Scholar 

  31. Belloni, L., private communication.

    Google Scholar 

  32. Dijkstra, M., Frenkel, D., and Hansen, J.P., (1994) J. Chem. Phys. 101, 3179

    Article  ADS  Google Scholar 

  33. Dijkstra, M., and Frenkel, D., (1994) Phys. Rev. Lett. 72, 298.

    Article  ADS  Google Scholar 

  34. Frenkel, D., and Louis, A., (1992) Phys. Rev. Lett. 68, pp. 3363.

    Article  ADS  Google Scholar 

  35. Van Duijneveldt, J.S., and Lekkerkerker, H.N.W., (1993) Phys. Rev. Lett. 71, pp. 4264.

    Article  ADS  Google Scholar 

  36. Mao, Y., Cates, M.E., and Lekkerkerker, H.N.W., (1995) Physica A 222, pp. 10.

    ADS  Google Scholar 

  37. Gotzelmann, B., Evans, R., and Dietrich, S., to appear in Phys. Rev. E.

    Google Scholar 

  38. Kranendonk, W.G.T., and Frenkel, D., (1988) Mol.Phys. 64, pp. 403.

    Article  ADS  Google Scholar 

  39. Dijkstra, M., Van Roij, R., and Evans, R., (1998) preprint.

    Google Scholar 

  40. Buhot, A., and Krauth, W., (1998) to appear in Phys. Rev. Lett.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Biben, T. (1999). On Effective Interactions in Colloidal Physics. In: Caccamo, C., Hansen, JP., Stell, G. (eds) New Approaches to Problems in Liquid State Theory. NATO Science Series, vol 529. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4564-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4564-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5671-4

  • Online ISBN: 978-94-011-4564-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics