Skip to main content

Performance of Enhanced Low-Order Elements for Plastic Continua

  • Conference paper
IUTAM Symposium on Discretization Methods in Structural Mechanics

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 68))

  • 267 Accesses

Abstract

Because of reasons of economy and easy mesh generation and post-processing, a huge effort has been invested in developing high-performance finite elements with interpolation functions of low order. Unfortunately, there are a number of cases where low-order, displacement-based elements perform poorly. A well-known example is the finite element modelling of incompressible material behaviour, where elements with low-order interpolations of displacements tend to ‘lock’ completely, thus yielding an overstiff solution (Nagtegaal et al. 1974). Many solutions have been put forward since, including special arrangements of elements (Nagtegaal et al. 1974), reduced or selective integration (Zienkiewicz and Taylor 1989), which is closely related to the B approach (Hughes 1980), the use of higher-order displacement models (Sloan and Randolph 1982, de Borst and Vermeer 1984), mixed approaches with an independent interpolation of displacements and pressures (Sussman and Bathe 1987, Van den Bogert et al. 1991), and most recently, the Enhanced Assumed Strain concept (Simo and Rifai 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • de Borst, R. and Vermeer, P. A. (1984) Possibilities and limitations of finite elements for limit analysis, Geotech-nique 34, 199–210.

    Article  Google Scholar 

  • de Borst, R. and Groen, A. E. (1995) Some observations on element performance in isochoric and dilatant plastic flow, Int. J. Num. Meth. Eng. 38, 2887–2906.

    Article  MATH  Google Scholar 

  • Hughes, T. J. R. (1980) Generalization of selective integration procedures to anisotropic and nonlinear media, Int. J. Num. Meth. Eng., 15, 1413–1418.

    Article  MATH  Google Scholar 

  • Hughes, T. J. R. (1987) The Finite Element Method, Prentice-Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  • Nagtegaal, J. C., Parks, D. M. and Rice, J. R. (1974) On numerically accurate finite element solutions in the fully plastic range, Comp. Meth. Appl. Mech. Eng. 4, 153–177.

    Article  MathSciNet  MATH  Google Scholar 

  • Sloan, S. W. and Randolph, M. F. (1982) Numerical prediction of collapse loads using finite element methods, Int. J. Num. Anal. Meth. Geomech. 6, 47–76.

    Article  MATH  Google Scholar 

  • Simo, J. C. and Rifai, M. S. (1990) A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Num. Meth. Eng. 29, 1595–1638.

    Article  MathSciNet  MATH  Google Scholar 

  • Sussman, T. and Bathe, K.-J. (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comput. Struct. 29, 357–409.

    Article  Google Scholar 

  • Taylor, R. L., Simo, J. C, Zienkiewicz, O. C. and Chan, A. C. (1986) The patch test — a condition for assessing FEM convergence, Int. J. Num. Meth. Eng., 22, 39–62.

    Article  MathSciNet  MATH  Google Scholar 

  • Van den Bogert, P. A. J., de Borst, R., Luiten, G. T. and Zeilmaker, J. (1991) Robust finite elements for 3D analysis of rubber-like materials, Eng. Comput. 8, 3–17.

    Article  Google Scholar 

  • Zienkiewicz, O. C. and Taylor, R. L. (1989) The Finite Element Method, McGraw-Hill, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

De Borst, R., Groen, A.E., Heeres, O.M. (1999). Performance of Enhanced Low-Order Elements for Plastic Continua. In: Mang, H.A., Rammerstorfer, F.G. (eds) IUTAM Symposium on Discretization Methods in Structural Mechanics. Solid Mechanics and its Applications, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4589-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4589-3_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5942-8

  • Online ISBN: 978-94-011-4589-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics