Skip to main content

Dynamic Processes and Disorder in Materials as seen by Temperature-Dependent Diffraction Experiments

  • Chapter
Implications of Molecular and Materials Structure for New Technologies

Part of the book series: NATO Science Series ((NSSE,volume 360))

  • 389 Accesses

Abstract

The primary results of crystal structure determinations are long lists of uninformative numbers: tables of atomic coordinates and anisotropic displacement parameters (ADP’s). To be useful the numbers need to be transformed. Atomic coordinates are easily converted into interatomic distances, angles, conformational descriptors and other quantities of interest in structural chemistry. Atomic displacement parameters which encode information on motion and disorder, are more difficult to decipher. This is because interatomic or correlation ADP’s which describe the coupling of atomic displacements, are lost in Bragg diffraction. Here it is shown how information on correlated atomic displacements can be retrieved from the temperature dependence of ADP’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Debye, P. (1913) Verh. Dtsch. Phys. Ges. 15, 738–752.

    Google Scholar 

  2. Trueblood, K.N., Bürgi, H.B., Burzlaff, H., Dunitz, J.D., Gramaccioti, C.M., Schulz, H.H., Shmueli, U., and Abrahams, S.C. (1996) Acta Crystallogr. A52, 770–781.

    CAS  Google Scholar 

  3. Coppens, P. (1993) International Tables for Crystallography, Vol. B, Reciprocal Space, U. Shmueli, ed., Section 1.2.11. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  4. Burnett, M.N., Johnson, C.K. (1996) ORTEP-III, Oak Ridge Thermal Ellipsoid Plotting Program for Crystal Structure Illustrations, ORNL-6895, Oak Ridge National Laboratory.

    Google Scholar 

  5. Hummel, W., Häuser, J., and Biirgi, H.B. (1990) J. Mol. Graphics 8, 214–220.

    Article  CAS  Google Scholar 

  6. Bom, M. (1942) Rep. Prog. Phys. 9, 294–333; von Laue, M. (1960) Röntgenstrahl-lnterferenzen, 3rd ed., Akademische Verlagsgesellschaft, Frankfurt/Main.

    Article  Google Scholar 

  7. Hirshfeld, F.L. (1976), Acta Crystallogr. A32, 239–244.

    Google Scholar 

  8. Rosenfield, Jr., R.E., Trueblood, K.N., Dunitz, J.D. (1978) Acta Crystallogr. A34, 828–829.

    CAS  Google Scholar 

  9. Schomaker, V., Trueblood, K.N. (1968) Acta Crystallogr. B24, 63–76.

    Google Scholar 

  10. Johnson, C.K. (1970) In Thermal Neutron Diffraction, Willis; B.T.M., ed.; Oxford University Press, London p. 132–160.

    Google Scholar 

  11. Dunitz, J.D., Schomaker, V., and Trueblood, K.N. (1988) J. Phys. Chem. 92, 856–867.

    Article  CAS  Google Scholar 

  12. Förtsch, M. (1997) Normal Mode Analysis from Atomic Mean Square Displacement Amplitudes, Ph.D. Thesis, University of Bern.

    Google Scholar 

  13. Willis, B.T.M., and Pryor, A.W. (1975) Thermal Vibrations in Crystallography, Cambridge University Press. Coppens, P. (1997) X-ray Charge Densities and Chemical Bonding, Oxford University Press, Chapter 2.

    Google Scholar 

  14. Cyvin, S.C. (1968) Molecular Vibrations and Mean Square Amplitudes, Universitets Forlaget, Oslo.

    Google Scholar 

  15. Wilson, E.B., Jr., Decius, J.C., and Cross, P.C. (1955) Molecular Vibrations, McGraw Hill, New York.

    Google Scholar 

  16. Jeffrey, G.A., Ruble, J.R., McMullan, R.K., and Pople, J.A. (1987) Proc. Roy. Soc. London A414, 47–57.

    Google Scholar 

  17. McMullan, R.K., Koetzle, T.F., Fritchie, Jr., C.J. (1997) Acta Crystallogr. B53, 645–653.

    CAS  Google Scholar 

  18. Goc, R. (1997) Z Naturforsch. 52a, 477–484.

    Google Scholar 

  19. For a review see: Braga, D. (1992) Chem. Rev., 92, 633–665.

    Article  Google Scholar 

  20. Goodman, L., Ozkabak, A.G., and Thakur, S.N. (1991) J. Phys. Chem. 95, 9044–9058.

    Article  CAS  Google Scholar 

  21. Capelli, S.C, Bürgi, H.B. (1997) ECM-17, meeting abstract MS2.7-3, Lisboa, Portugal,).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buergi, H.B., Capelli, S.C. (1999). Dynamic Processes and Disorder in Materials as seen by Temperature-Dependent Diffraction Experiments. In: Howard, J.A.K., Allen, F.H., Shields, G.P. (eds) Implications of Molecular and Materials Structure for New Technologies. NATO Science Series, vol 360. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4653-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4653-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5817-6

  • Online ISBN: 978-94-011-4653-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics