Skip to main content

The Best Turbulence Models for Engineers

  • Chapter
Modeling Complex Turbulent Flows

Part of the book series: ICASE/LaRC Interdisciplinary Series in Science and Engineering ((ICAS,volume 7))

Abstract

“The best turbulence model” is obviously the Navier-Stokes equations, which are almost universally accepted as an accurate description of turbulence in simple fluids. Solving them to obtain converged statistics (DNS) requires computer work proportional to the cube of the Reynolds number, approximately, so there will always be a limit to the attainable Reynolds number, At present this limit is of the order of the Reynolds number attained in small-scale laboratory experiments. Thus “The best turbulence model for aeronautical engineers” is — again obviously — not the Navier-Stokes (NS) equations. (DNS is and always will be a valuable research tool for developing and testing models based on simplifications of the NS equations: see Moin and Mahesh (1998).) The less-obvious point of this Abstract is that “best”, in the title, is a time-dependent word and that it is short for “most cost-effective”. This paper is a review of options, a brief history, and an assessment of current ideas and future possibilities. It seems likely that Reynolds-averaged models will continue to advance modestly, somewhat less likely that engineers will routinely use the highest-level models, and almost certain that large-eddy simulation will start to replace or assist Reynolds-averaged models in the next decade or so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apsley, D.D., Chen, W.-L., Leschziner, M.A. and Lien, F.-S., 1997. “Non-Linear Eddy-Viscosity Modelling of Separated Flows,” J. Hydraulic Res. 35, p. 723.

    Article  Google Scholar 

  • Barenblatt, G.I., Chorin, A.J., and Prostokishin, V.M., 1997. g“Scaling Laws for Fully Developed Turbulent Flow in Pipes: Discussion of Experimental Data,” Proc. Nat Acad. Sci. USA 94, p. 773.

    Article  ADS  MATH  Google Scholar 

  • Bradshaw P. and Huang P.G. 1995. “The Law of the Wall in Turbulent Flow” Proc. Roy. Soc. London A451 p. 16

    Google Scholar 

  • Bradshaw, P. and Strigberger, J., 1995. “Modeling of Surface Pressure Fluctuations,” Final Report on Boeing P.O. HY7422.

    Google Scholar 

  • Bradshaw P., Mansour, N.N., and Piomelli, U., 1987. “On Local Approximations of the Pressure-Strain Term in Turbulence Models,” Studying Turbulence Using Numerical Simulation Databases, Ames/Stanford Center for Turbulence Research CTR-S87, p. 159.

    Google Scholar 

  • Cabot, W., 1996. “Near-Wall Models in Large Eddy Simulations of Flow Behind a Backward-Facing Step,” NASA Ames/Stanford Center for Turbulence Research, Annual Research Briefs, p. 199.

    Google Scholar 

  • Cazalbou, J.B., Spalart, P.R., and Bradshaw, P., 1994. “On the Behavior of Two-Equation Models at the Edge of a Turbulent Region,” Phys. Fluids 6, p. 1797.

    Article  ADS  MATH  Google Scholar 

  • Cousteix, J. Saint-Martin V., Messing R., Bezard H., and Aupoix, B., 1997. “Development of the k.ϕ Turbulence Model,” presented at 11th International Symposium on Turbulent Shear Flows.

    Google Scholar 

  • Craft, T.J., Kidger, J.E., and Launder, B.E., 1997. “Importance of Third-Moment Modeling in Horizontal, Stably-Stratified Flows,” presented at 11th International Symposium on Turbulent Shear Flows.

    Google Scholar 

  • Craft, T.J., Launder, B.E., and Suga, K., 1993. “Extending the Applicability of Eddy Viscosity Models Through the Use of Deformation Invariants and Non-Linear Elements,” Proc. 5th IAHR Symposium on Refined-Flow Modelling and Turbulence Measurements.

    Google Scholar 

  • Durbin, P.A., 1993. “A Reynolds Stress Model for Near-Wall Turbulence,” J. Fluid Mech. 249. p. 465.

    Article  ADS  Google Scholar 

  • Durbin, P.A., 1995. “Separated Flow Computations with the k-ε-υ2 Model,” AIAA J. 33. p. 659.

    Article  ADS  Google Scholar 

  • Ferziger, J.H., Kline, S.J., Avva, R.V., Bordalo, S.N., and Tzuoo, K.-L., 1990. “Zonal Modelling of Turbulent Flows-Philosophy and Accomplishments,” Near-wall Turbulence-1988 Zaric Memorial Conference, S. J. Kline and N. H. Afgan, eds., Hemisphere, p. 800.

    Google Scholar 

  • Ferziger, J.H., 1996. “Recent Advances in Large-Eddy Simulation,” Engg. Turb. Modelling and Expt. 3, W. Rodi and G. Bergeles, eds., Elsevier, p. 163.

    Google Scholar 

  • Fu S., Huang, P.G., Launder, B.E., Leschziner, M.A., 1988. “A Comparison of Algebraic and Differential Second-Moment Closures for Axisymmetric Turbulent Shear Flows With and Without Swirl,” J. Fluids Engg. 110, p. 216.

    Article  Google Scholar 

  • Gatski, T.B. and Speziale, C.G., 1993. “On Explicit Algebraic Stress Models for Complex Turbulent Flows,” J. Fluid Mech. 254, p. 59.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • George, W.K. and Castillo, L., 1993. “Boundary Layers with Pressure Gradient-Another Look at the Equilibrium Boundary Layer,” Near-Wall Turbulent Flows, R. M. C. So, C. G. Speziale, and B.E. Launder, eds., Elsevier, p. 901.

    Google Scholar 

  • Gibson, M.M. and Harper, R.D., 1997. “Calculation of Impinging Jet Heat Transfer with the Low-Reynolds Number q Turbulence Model,” Int. J. Heat and Fluid Flow 18, p. 80.

    Article  Google Scholar 

  • Head M.R. 1958. “Entrainent in the Turbulent Boundary Layer” British Aero. Res. Counc. R. & M. 3152

    Google Scholar 

  • Heyerichs, K. and Pollard, A., 1996. “Heat Transfer in Separated and Impinging Turbulent Flows,” Int. J. Heat Mass Transfer 39, p. 2385.

    Article  MATH  Google Scholar 

  • Huang, P.G., Bradshaw P., and Coakley, T.J., 1994. “Turbulence Models for Compressible Boundary Layers,” AIAA J. 32, p. 735.

    Article  ADS  MATH  Google Scholar 

  • Kalitzin G., Benton, J.J., and Gould, A.R.B., 1996. “Application of Two-Equation Turbulence Models in Aircraft Design,” AIAA paper 96–0327.

    Google Scholar 

  • Kline, S.J., Morkovin, M.V., Sovran G., and Cockrell, D.J., eds., 1969. Proceedings, Computation of Turbulent Boundary Layers-1968 AFOSR-IFP-Stanford Conference, Thermosciences Division, Stanford University.

    Google Scholar 

  • Mason, P.J., 1996. “Large-Eddy Simulation: A Critical Review of the Technique,” Quart. J. Roy. Met. Soc. 120, p. 1.

    Article  ADS  Google Scholar 

  • Moin, P. and Mahesh, K., 1998. “Direct Numerical Simulation: A Tool in Turbulence Research,” Ann. Rev. Fluid Mech. 30, p. 539.

    Article  MathSciNet  ADS  Google Scholar 

  • Myong, H.K. and Kasagi, N., 1990. “Prediction of Anisotropy of the Near-Wall Turbulence With an Anisotropic Low-Reynolds-Number k, ɛ Turbulence Model,” J. Fluids Engg. 112, p. 521.

    Article  Google Scholar 

  • Nagano, Y. and Tagawa, M., 1990. “Scalar,” J. Fluid Mech. 215, p. 639.

    Article  ADS  Google Scholar 

  • Nagano Y., Hattori H., and Abe, K., 1997. “Modeling the Turbulent Heat and Momentum Transfer in Flows Under Different Thermal Conditions,” Fluid Dynamics Research 20, p. 12

    Article  ADS  Google Scholar 

  • Najjar, F.M. and Tafti, D.K., 1996. “Study of Discrete Test Filters and Finite Difference Approximations for the Dynamic Subgrid-Scale Stress Model,” Phys. Fluids 8, p. 1076.

    Article  ADS  MATH  Google Scholar 

  • Nakayama, A. and Vengadesan, S., 1993. “A Non-Local Turbulent Transport Model,” presented at 9th Symposium on Turbulent Shear Flows, paper 26–40.

    Google Scholar 

  • Oberlack, M., 1997. “Unified Theory for Symmetries in Plane Parallel Turbulent Shear Flows,” Stanford/Ames Center for Turbulence Research Manuscript 163, submitted to J. Fluid Mech.

    Google Scholar 

  • Parneix, S. and Durbin, P.A., 1996. “A New Methodology for Turbulence Modelers Using DNS Database Analysis Stanford/Ames Center for Turbulence Research, Annual Research Briefs, p. 17.

    Google Scholar 

  • Pope, S.B., 1994. “On the Relationship Between Stochastic Lagrangian Models of Turbulence and Second-Moment Closures,” Phys. Fluids 6, p. 973.

    Article  ADS  MATH  Google Scholar 

  • Schlichting, H., 1979. Boundary Layer Theory, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Schumann, U., 1977. “Realizability of Reynolds-Stress Turbulence Models,” Phys. Fluids 20, p. 721.

    Article  ADS  MATH  Google Scholar 

  • Shih, T.-H., 1997. “Developments in Computational Modeling of Turbulent Flows,” Fluid Dyn. Res. 20, p. 67.

    Article  ADS  Google Scholar 

  • Shur M., Strelets M., Zaikov L., Gulyaev A., Kozlov V., and Secundov, A., 1995. “Comparative Numerical Testing of One-and Two-Equation Turbulence Models for Flows with Separation and Reattachment,” AIAA paper 95–0863.

    Google Scholar 

  • Spalding, D.B., 1991. “Kolmogorov’s Two-Equation Model of Turbulence,” Proc. Roy. Soc. London A434, p. 211.

    MathSciNet  ADS  Google Scholar 

  • Townsend, A.A., 1961. “Equilibrium Layers and Wall Turbulence,” J. Fluid Mech. 11, p. 97.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wang, Q. and Squires, K.D., 1996. “Large Eddy Simulation of Particle-Laden Turbulent Channel Flow,” Phys. Fluids 8, p. 1207.

    Article  ADS  MATH  Google Scholar 

  • Wilcox, D.C., 1998. Turbulence Modeling for CFD (2nd Edition) DCW Industries, La Canada, CA.

    Google Scholar 

  • Zagarola, M.V., Perry, A.J., and Smits, A.J., 1997. “Log Laws or Power Laws: The Scaling in the Overlap Region,” Phys. Fluids 9, p. 2094.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bradshaw, P. (1999). The Best Turbulence Models for Engineers. In: Salas, M.D., Hefner, J.N., Sakell, L. (eds) Modeling Complex Turbulent Flows. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4724-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4724-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5986-2

  • Online ISBN: 978-94-011-4724-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics