Skip to main content

Space Plasma Phenomena: Laboratory Modeling

II. Waves and Particles in Plasma, Turbulence

  • Chapter
Laboratory Astrophysics and Space Research

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 236))

Abstract

As this chapter is the continuation and the second part of the review initiated in the previous chapter, we invite the reader to refer first to the preceding introduction before to begin the reading of the following text. Like in the first part of our review, our interest is mainly focused upon plasma research in laboratory aimed at space and astrophysical applications. As we do not claim to perform hereafter an exhaustive presentation, we have restricted ourselves to some plasma physics topics relevant to wave radiation, propagation and instabilities, particle acceleration and heating, beam dynamics, wave-particle interactions, nonlinear phenomena and turbulent processes, presented mainly in the frame of Alfven and whistler waves, electron beams, current and antenna systems, shock waves, ion-acoustic soli-tons and Langmuir turbulence. In our opinion, this limited choice allows nevertheless the reader to get a reasonable insight into linear and nonlinear processes involving waves and particles in laboratory plasmas modeling space conditions. However, we apologize for the necessary omissions that obviously need to be done to discuss such a wide subject in a few pages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alinovskii, N.I., Eselevich, V.G., Koshilev, N.A. and Kurtmullaev, R. Kh. (1970) Investigation of the ion spectrum of a plasma heated by a shock wave, Sov. Phys. JETP, 30, 385.

    ADS  Google Scholar 

  • Alinovskii, N.I, Altyntsev, A.T. and Koshilev, N.A. (1972) Investigation of the heating of a plasma ion component by a collisionless shock wave, Sov. Phys. JETP, 35, 1108.

    ADS  Google Scholar 

  • Altyntsev, A.T., Kichigin, G.N., Lebedev, N.V. and Strokin, N.A. (1989) Ion acceleration and scattering by a collisionless shock wave, Sov. Phys. JETP, 69, 324.

    Google Scholar 

  • Amagishi, Y., Tsushima, A. and Inutake, M. (1982) Conversion of Compressional Alfven waves into Ion-Cyclotron Waves in Inhomogeneous Magnetic Fields, Phys. Rev. Lett., 48, 1183.

    ADS  Google Scholar 

  • Amagishi, Y. (1986) Experimental evidence of MHD surfaces waves, Phys. Rev. Lett., 57, 2807.

    ADS  Google Scholar 

  • Amagishi, Y., Saeki, K. and Donnelly, I.J. (1989) Excitation of MHD surface waves propagating with shear Alfven waves in an inhomogeneous cylindrical plasma, Plasma Phys. Cont. Fus., 31, 675.

    ADS  Google Scholar 

  • Amagishi, Y. (1990) Experiments on mode conversion of m =-1 fast wave into a shear Alfven wave in a cylindrical plasma, J. Phys. Soc. Jpn., 59, 2374.

    ADS  Google Scholar 

  • Anderson, R.R., Parks, G.K., Eastman, T.E., Gurnett, D.A. and Prank, L.A. (1981) Plasma Waves Associated With Energetic Particles Streaming Into the Solar Wind From the Earth’s Bow Shock, J. Geophys. Res., 86, 4493.

    ADS  Google Scholar 

  • Antipov, S.V., Nezlin, M.V., Snezhkin, E.N. and Trubnikov, A.S. (1979) Excitation of Langmuir solitons by monoenergetic electron beams, Sov. Phys. JETP, 49, 797.

    ADS  Google Scholar 

  • Balmain, K.G. (1979) The properties of antennas in plasmas, Ann. Telecommunic., 34, 273.

    ADS  Google Scholar 

  • Bamber, J.F., Maggs, J.E. and Gekelman, W. (1995) Whistler wave interaction with a density striation: A laboratory investigation of an auroral process, J. Geophys. Res., 100, 23795.

    ADS  Google Scholar 

  • Bauer, B.S., Wong, A.Y., Scurry, L. and Decyk, V.K. (1990) Efficiency of caviton formation as a function of plasma density gradient, Phys. Fluids B, 2, 1941.

    ADS  Google Scholar 

  • Baumjohann, W. and Treumann, R.A. (1996) Basic Space Plasma Physics, Imperial College Press.

    Google Scholar 

  • Bell, T.F., Helliwell, R.A. and Hudson, M.K. (1991) Lower Hybrid Waves Excited Through Linear Mode Coupling and the Heating of Ions in the Auroral and Sub-auroral Magnetosphere, J. Geophys. Res., 96, 11379.

    ADS  Google Scholar 

  • Bellan, P. (1976) Resonance Cones below the Ion Cyclotron Frequency: Theory and Experiment, Phys. Rev. Lett., 37, 903.

    ADS  Google Scholar 

  • Benford, G., Tzach, D., Kato, K. and Smith, D.F. (1980) Collective Microwave Emission from Intense Electron-Beam Interactions: Theory and Experiment, Phys. Rev. Lett., 45, 1182.

    ADS  Google Scholar 

  • Berezhko, E.G. and Krymskii, G.F. (1988) Acceleration of cosmic rays by shock waves, Sov. Phys. Usp., 31, 27.

    ADS  Google Scholar 

  • Berezin, A.K., Lifshits, E.V., Fainberg, Ya. B., Bez’yazychnyi, I.A., Lyapkalo, Yu.M. and Artamoshkin, A.M. (1995) Collective Interaction of Intense Pulsed Electron Beams with Plasma: Formation and Development of Beam-Plasma Discharge.I, Plasma Phys. Rep., 21, 214.

    ADS  Google Scholar 

  • Berezina, G.P., Fainberg, Ya.B., Berezin, A.K. and Nazarenko, O.K. (1994) Modulated Electron beam Utilization for Generation and Transfer of Electromagnetic Waves in Dense Plasmas, Plasma Phys. Rep., 20, 747.

    ADS  Google Scholar 

  • Berezina, G.P., Fainberg, Ya.B. and Berezin, A.K. (1996) Experimental Study of the Excitation of Low-Frequency Oscillations and Ion Acceleration in High-Intensity Beam-Plasma Discharges, Plasma Phys. Rep., 22, 306.

    ADS  Google Scholar 

  • Bernstein, W., Leinbach, H., Kellogg, P.J., Monson, S.J. and Hallinan, T. (1979) Further Laboratory Measurements of the Beam-Plasma Discharge, 84, 7271.

    Google Scholar 

  • Boehm, M.H., Carlson, C.W., McFadden, J.P., Clemmons, J.H. and Mozer, F.S. (1990) High-Resolution Sounding Rocket Observations of Large-Amplitude Alfven Waves, J. Geophys. Res., 95, 12157.

    ADS  Google Scholar 

  • Borg, G.C. and Cross, R.C. (1987) Guided propagation of Alfven waves and ion-ion hybrid waves in a plasma with two ion species, Plasma Phys. Cont. Fus., 29, 681.

    ADS  Google Scholar 

  • Borovsky, J.E. (1993) Auroral arc thicknesses as predicted by various theories, J. Geophys. Res., 98, 6101.

    ADS  Google Scholar 

  • Boswell, R.W. and Kellogg, P.J. (1983) Geophys. Res. Lett., 10, 565.

    ADS  Google Scholar 

  • Boswell, R.W. (1984) Very efficient plasma generation by whistler waves near the lower hybrid frequency, Plasma Phys. Cont. Fus., 26, 1147.

    ADS  Google Scholar 

  • Boswell, R.W., Morey, I.J. and Porteous, R.K. (1989) Wave Phenomena Preceding and During a Beam-Plasma Discharge, J. Geophys. Res., 94, 2654.

    ADS  Google Scholar 

  • Burgess, W.C. and Inan, U.S. (1993) The Role of Ducted Whistlers in the Precipitation Loss and Equilibrium Flux of Radiation Belt Electrons, J. Geophys. Res., 98, 15643.

    ADS  Google Scholar 

  • Bystrov, S.A., Ivanov, V.I. and Shugaev, F.V. (1989) Propagation of plane shock wave in weakly ionized plasma, Sov. J. Plasma Phys., 15, 324.

    Google Scholar 

  • Bystrov, S.A., Zaslonko, I.S., Mukoseev, Yu.K. and Shugaev, F.V. (1990) Precursor ahead of a shock front in an rf discharge plasma, Sov. Phys. Dokl., 35, 39.

    ADS  Google Scholar 

  • Carlson, C.R., Helliwell, R.A. and Inan, U.S. (1990) Space-Time Evolution of Whistler Mode Wave Growth in the Magnetosphere, J. Geophys. Res., 95, 15073.

    ADS  Google Scholar 

  • Chan, C, Khazei, M., Lonngren, K.E. and Hershkowitz, N. (1981) Excitation of multiple ion-acoustic shocks, Phys. Fluids, 24, 1452.

    ADS  Google Scholar 

  • Chan, C. and Ye, J.Z. (1992) Nonlinear Interactions between Electrons and RF Waves in Crossed Electric and Magnetic Fields, IEEE Trans. Plasma Sci., 20, 659.

    ADS  Google Scholar 

  • Chan, C. and Stenzel, R.L. (1994) Beam scattering and heating at the front of an electron beam injected into a plasma, Phys. Plasmas, 1, 2063.

    ADS  Google Scholar 

  • Cheung, P.Y., Wong, A.Y., Darrow, C.B. and Qian, S.J. (1982) Simultaneous Observation of Caviton Formation, Spiky Turbulence, and Electromagnetic Radiation, Phys. Rev. Lett., 48, 1348.

    ADS  Google Scholar 

  • Cheung, P.Y. and Wong, A.Y. (1985) Periodic Collapse and Long-Time Evolution of Strong Langmuir Turbulence, Phys. Rev. Lett., 55, 1880.

    ADS  Google Scholar 

  • Cheung, P.Y., DuBois, D.F., Fukuchi, T., Kawan, K., Rose, H.A., Russell, D., Tanikawa, T. and Wong, A.Y. (1992) Investigation of Strong Langmuir Turbulence in Ionospheric Modification, J. Geophys. Res., 97, 10575.

    ADS  Google Scholar 

  • Cheung, P.Y., Mjolhus, E., DuBois, D.F., Pau, J., Zwi, H. and Wong, A.Y. (1997) Stimu-lated Radiation from Strong langmuir Turbulence in Ionospheric Modification, Phys. Rev. Lett., 79, 1273.

    ADS  Google Scholar 

  • Cross, R.C. (1983) Experimental observations of localized Alfven and ion-acoustic waves in a plasma, Plasma Phys., 25, 1377.

    ADS  Google Scholar 

  • Dobrowolny, M. and Melchioni, E. (1993) Electrodynamic Aspects of the First Tethered Satellite Mission, J. Geophys. Res., 98, 13761.

    ADS  Google Scholar 

  • Dudkin, G.N., Lukanin, A.A., Nechaev, B.A., Peshkov, A.V. and Ryzhkov, V.A. (1992) Observation of deuteron acceleration in a collision of magnetosonic shock waves in a plasma, JETP Lett., 55, 721.

    ADS  Google Scholar 

  • Dudkin, G.N., Nechaev, B.A., Peshkov, A.V., Ryzhkov, V.A., Lukanin, A.A. and Shlapakovskii, A.S. (1994) Acceleration of plasma ions through the collision of two magnetoacoustic collisionless shock waves, Sov. Phys. JETP, 78, 865.

    ADS  Google Scholar 

  • Dudkin, G.N., Egorov, V.Yu., Nechaev, B.A. and Peshkov, A.V. (1995) Mechanism for ion acceleration in a collision of magnetosonic shock waves, JETP Lett., 61, 633.

    ADS  Google Scholar 

  • Egorov, S.V., Kostrov, A.V. and Tronin, A.V. (1988) Thermal diffusion and eddy currents in a magnetized plasma, JETP. Lett., 47, 102.

    ADS  Google Scholar 

  • Eselevich, V.G., Es’kov, A.G., Kurtmullaev, R. Kh. and Malyutin, A.I. (1971) Isomagnetic discontinuity in a collisionless shock wave, Sov. Phys. JETP, 33, 1120.

    ADS  Google Scholar 

  • Fisher, R.K. and Gould, R.W. (1971) Resonance Cones in the Field Pattern of a Radio Frequency Probe in a Warm Anisotropic Plasma, Phys. Fluids, 14, 857.

    ADS  Google Scholar 

  • Gabl, E.F., Bulson, J.M. and Lonngren, K.E. (1984) Excitation of a two-dimensional ion-acoustic soliton, Phys. Fluids, 27, 269.

    ADS  Google Scholar 

  • Galeev, A.A., Mishin, E.V., Sagdeev, R.Z., Shapiro, V.D. and Shevchenko, V.I. (1976) Discharge in the region around a rocket following the injection of electron beams in the ionosphere, Sov. Phys. Dokl., 21, 641.

    ADS  Google Scholar 

  • Gekelman, W. and Stenzel, R.L. (1977) Particle and wave dynamics in a magnetized plasma subject to high rf pressure, Phys. Fluids, 20, 1316.

    ADS  Google Scholar 

  • Gekelman, W., Leneman, D., Maggs, J. and Vincena, S. (1994) Experimental observation of Alfven wave cones, Phys. Plasmas, 1, 3775.

    ADS  Google Scholar 

  • Gekelman, W. (1995) Active and laboratory experiments in space plasma physics, Surveys Geophys., 16, 457.

    ADS  Google Scholar 

  • Gekelman, W., Vincena, S., Leneman, D. and Maggs, J. (1997) Laboratory experiments on shear Alfven waves and their relationship to space plasmas, J. Geophys. Res., 102, 7225.

    ADS  Google Scholar 

  • Golubyatnikov, G., Egorov, S.V., Kostrov, A.V. and Chugunov, Yu.V. (dy1985) Patent of the USSR N° 3919735/31-25.

    Google Scholar 

  • Golubyatnikov, G.Yu., Egorov, S.V., Kostrov, A.V., Mareev, E.A. and Chugunov, Yu.V. (1988a) Excitation of electrostatic and whistler waves by a magnetic antenna, Sov. Phys. JETP, 67, 717.

    Google Scholar 

  • Golubyatnikov, G.Yu., Egorov, S.V., Kostrov, A.V., Mironov, V.A. and Chugunov, Yu.V. (1988b) Spatial dynamics of the heating and thermodiffusion of a plasma, Sov. Phys. JETP, 14, 285.

    Google Scholar 

  • Golubyatnikov, G.Yu., Egorov, S.V., Kostrov, A.V., Mareev, E.A. and Chugunov, Yu.V. (1989) Quasi-electrostatic wave trapping in the thermal channel formed by the near field of an electromagnetic antenna in a magnetized plasma, Sov. Phys. JETP, 69, 1134.

    Google Scholar 

  • Golubyatnikov, G.Yu. and Stenzel, R.L. (1993) Thermal magnetic fluctuations of whistlers in a Maxwellian plasma, Phys. Fluids B, 5, 3122.

    ADS  Google Scholar 

  • Golubyatnikov, G.Yu., Egorov, S.V., Eremin, B.G., Litvak, A.G., Strikovskii, A.V., Tolkacheva, O.N. and Chugunov, Yu.V. (1995) Lower-hybrid breakdown of gas in the field of a current-carrying loop in a plasma-filled magnetic confinement system, Sov. Phys. JETP, 80, 234.

    ADS  Google Scholar 

  • Gorshkov, V.A., Klimov, A.I., Mishin, G.I., Fedotov, A.B. and Yavor, I.P. (1987) Behavior of electron density in weakly ionized nonequilibrium plasma with a propagating shock wave, Sov. Tech. Phys., 32, 1138.

    Google Scholar 

  • Gosling, J.T., Bame, S.J., Feldman, W.C., Paschmann, G., Sckopke, N. and Russell, C.T. (1984) Suprathermal Ions Upstream Prom Interplanetary Shocks, J. Geophys. Res., 89, 5409.

    ADS  Google Scholar 

  • Greenstadt, E.W., Russell, CT., Gosling, J.T., Bame, S.J., Paschmann, G., Parks, G.K., Anderson, K.A., Scarf, F.L., Anderson, R.R., Gurnett, D.A., Lin, R.P., Lin, C.S. and Reme, H. (1980) A Macroscopic Profile of the Typical Quasi-Perpendicular Bow Shock: ISEE 1 and 2, J. Geophys. Res., 85, 2124.

    ADS  Google Scholar 

  • Guglielmi, A. and Pokhotelov, O. (1993) Nonlinear Problems of Physics of the Geomagnetic Pulsations, Space Sci. Rev., 65, 5.

    ADS  Google Scholar 

  • Gunell, H., Verboncoeur, J.P., Brenning, N. and Torven, S. (1996a) Formation of Electric Field Spikes in Electron-Beam-Plasma Interaction, J. Geophys. Res., 77, 5059.

    Google Scholar 

  • Gunell, H., Brenning, N. and Torven, S. (1996b) Bursts of high-frequency plasma waves at an electric double layer, J. Phys. D: Appl. Phys., 29, 643.

    ADS  Google Scholar 

  • Gustafeson, G., Andre, M., Matson, L. and Koskinen, H. (1990) On Waves below the Local Proton Gyrofrequency in Auroral Acceleration Regions, J. Geophys. Res., 95, 5889.

    ADS  Google Scholar 

  • Gurnett, D.A., Hospodarsky, G.B., Kurth, W.S., Williams, D.J. and Bolton, S.J. (1993) Fine Structure of Langmuir Waves Produced by a Solar Electron Event, J. Geophys. Res., 98, 5631.

    ADS  Google Scholar 

  • Hasegawa, A. (1976) Particle Acceleration by MHD Surface Wave and Formation of Aurora, J. Geophys. Res., 81, 5083.

    ADS  Google Scholar 

  • Hayakawa, M. and Sazhin, S.S. (1992) Mid-latitude and plasmasheric hiss: a review, Planet. Space Sci., 40, 1325.

    ADS  Google Scholar 

  • Hayakawa, M. (1995) Association of whistlers with lightning discharges on the Earth and on Jupiter, J. Atmos. Terr. Phys., 57, 525.

    ADS  Google Scholar 

  • Helliwell, R.A. (1993) 40 Years of Whistlers, in Modern Radio Science 1993, edited by H. Matsumoto, Oxford University Press, p. 189.

    Google Scholar 

  • Hershkowitz, N. and Romesser, T. (1974) Observations of Ion-Acoustic Cylindrical Solitons, Phys. Rev. Lett., 32, 581.

    ADS  Google Scholar 

  • Honzawa, T. (1984) Wave excitation and fast ion generation in a double plasma device, Phys. Fluids, 27, 1013.

    ADS  Google Scholar 

  • Honzawa, T., Arakawa, M. and Singh, S. (1992) Strong interaction of solitons and thentrailing oscillations with resonant beam ions, Phys. Fluids B, 4, 2807.

    ADS  Google Scholar 

  • Honzawa, T. and Nagasawa, T. (1997) Effects of fast beam ions on ion-acoustic solitons and shocks excited in a double plasma device, Phys. Plasmas, 4, 3954.

    ADS  Google Scholar 

  • Hopman, H.J. and Jansen, G.C.A.M. (1984) Scattering of Relativistic Electrons on Electric Field Concentrations in a Turbulent Plasma, Phys. Rev. Lett., 52, 1613.

    ADS  Google Scholar 

  • Horwitz, J.L. and Zalesak, S.T. (1996) Computer Simulation of Multiple-Scale Processes in Space Plasmas: 1993–1995 Progress, in Review of Radio Science 1993–1996, edited by W. Ross Stone, Oxford University Press, Oxford, p. 677.

    Google Scholar 

  • Hospodarsky, G.B., Gurnett, D.A., Kurth, W.S., Kivelson, M.G., Strangeway, R.J. and Bolton, S.J. (1994) Fine structure of Langmuir waves observed upstream of the bow shock of Venus, J. Geophys. Res., 99, 13363.

    ADS  Google Scholar 

  • Ickovic, J., Stenzel, R.L. and Gekelman, W. (1977) Direct density display with a resonance cone rf probe, Rev. Sci. Instrum., 48, 485.

    ADS  Google Scholar 

  • Idehara, T., Takeda, M. and Nishida, Y. (1974) Behavior of Bernstein waves propagating obliquely to the magnetic field in a beam-plasma system, Phys. Fluids, 17, 266.

    ADS  Google Scholar 

  • Ikezi, H., Taylor, R.J. and Baker, D.R. (1970) Formation and interaction of ion-acoustic solitons, Phys. Rev. Lett., 25, 11.

    ADS  Google Scholar 

  • Inan, U.S. and Bell, T.F. (1991) Pitch Angle Scattering of Energetic particles by Oblique Whistler Waves, Geophys. Res. Lett., 18, 49.

    ADS  Google Scholar 

  • Intrator, T., Hershkowitz, N. and Chan, C. (1984) Experimental observations of nonlinearly enhanced 2ωuh electromagnetic radiation excited by steady-state colliding electron beams, Phys. Fluids, 27, 527.

    ADS  Google Scholar 

  • James, H.G. (1973) Whistler mode hiss at low and medium frequencies in the dayside cusp ionosphere, J. Geophys. Res., 78, 4578.

    ADS  Google Scholar 

  • Jephcott, D.F. and Stocker, P.M. (1962) Hydrodynamic waves in a cylindrical plasma: An experiment, J. Fluid. Mesh., 13, 587.

    ADS  Google Scholar 

  • Jones, F.C. and Ellison, D.C. (1991) The plasma physics of shock acceleration, Space Sci. Rev., 58, 259.

    ADS  Google Scholar 

  • Karfidov, D.M., Rubenchik, A.M., Sergeichev, K.F. and Sychev, I.A. (1990) Strong Langmuir turbulence excited by an electron beam in a plasma, Sov. Phys. JETP, 71, 892.

    Google Scholar 

  • Kharchenko, I.F., Fainberg, Ya.B., Kornilov, E.A. and Pedenko, N.S. (1964) Excitation of oscillations in plasma by an electronic beam, Sov. Tech. Phys., 9, 798.

    Google Scholar 

  • Kim, H.C., Stenzel, R.L. and Wong, A.Y. (1974) Development of ‘Cavitons’ and Trapping of rf Field, Phys. Rev. Lett., 33, 886.

    ADS  Google Scholar 

  • Kivelson, M.G. and Russell, C.T. (1995) Introduction to Space Physics, Cambridge University Press.

    Google Scholar 

  • Koons, H.C. and McPherson, D.A. (1974) Measurement of the nonlinear impedance of a satellite-borne, electric dipole antenna, Radio Sci., 9, 547.

    ADS  Google Scholar 

  • Kostrov, A.V., Pakhotin, V.A., Smirnov, A.I., Starodubtsev, M.V. and Shaikin, A.A. (1995) Effect of a Magnetized Plasma Sheath on Radiation Performance of a Short Antenna, Plasma Phys. Rep., 21, 435.

    ADS  Google Scholar 

  • Kostrov, A.V., Smirnov, A.I., Starodubtsev, M. and Shaikin, A.A. (1998a) Influence of nonlinear effects on whistler emission in magnetoactive plasma, JETP Lett., 67, 579.

    ADS  Google Scholar 

  • Kostrov, A.V., Starodubtsev, M., Krafft, C, Matthieussent, G. and Volokitin, A.S. (1998b) Interaction of a modulated electron beam with a magnetoactive plasma, JETP Lett., 67, 400.

    ADS  Google Scholar 

  • Krafft, C, Matthieussent, G., Thevenet, P. and Bresson, S. (1994) Interaction of a density modulated electron beam with a magnetized plasma: Emission of whistler waves, Phys. Plasmas, 1, 2163.

    ADS  Google Scholar 

  • Lavergnat, J. (1982) The french-soviet experiment ARAKS: Main results, in Artificial Particle Beams in Space Plasmas Studies, edited by B. Grandal, Plenum Press, New York, p. 87.

    Google Scholar 

  • Lee, S.G., Diebold, D.A., Hershkowitz, N. and Moroz, P. (1996) Wide Solitons in an Ion-Bep.m-Plasma System, Phys. Rev. Lett., 77, 1290.

    ADS  Google Scholar 

  • Leung, P., Tran, M.Q. and Wong, A.Y. (1982) Plasma wave collapse generated by the interaction of two oppositely propagating electron beams with a plasma, Plasma Phys., 24, 567.

    ADS  Google Scholar 

  • Linson, L.M. (1982) Charge neutralization as studied experimentally and theoretically, in Artificial Particle Beams in Space Plasma Studies, edited by B. Grandal, Plenum Press, New York, p. 573.

    Google Scholar 

  • Lonngren, K.E. (1983) Soliton experiments in plasmas, Plasma Phys., 25, 943.

    ADS  Google Scholar 

  • Lundin, R., Eliasson, L., Haerendel, G., Boehm, M. and Holback, B. (1994) Large scale auroral plasma density cavities observed by Freja, Geophys. Res. Lett., 21, 1903.

    ADS  Google Scholar 

  • Maggs, J.E. and Morales, G.J. (1996) Magnetic fluctuations associated with field-aligned striations, Geophys. Res. Lett., 23, 633.

    ADS  Google Scholar 

  • Maggs, J.E. and Morales, G.J. (1997) Fluctuations associated with a filamentary density depletion, Phys. Plasmas, 4, 290.

    ADS  Google Scholar 

  • Maggs, J.E., Morales, G.J. and Gekelman, W. (1997) Laboratory studies of field-aligned density striations and their relationship to auroral processes, Phys. Plasmas, 4, 1881.

    ADS  Google Scholar 

  • Mareev, E.A. and Chugunov, Yu.V. (1991) Antennas in plasmas, IPFAN Press, Nizhny-Novgorod, in russian.

    Google Scholar 

  • Marshall, E.M., Ellis, R.F. and Walsh, J.E. (1986) Collisional Drift Instability in a variable radial electric field, Plasma Phys. Cont. Fus., 28, 1461.

    ADS  Google Scholar 

  • McFadden, J.P., Carlson, C.W. and Boehm, M.H. (1986) High-Frequency Waves Generated by Auroral Electrons, J. Geophys. Res., 91, 12079.

    ADS  Google Scholar 

  • McFarland, M.D. and Wong, A.Y. (1997) Spectral content of strong Langmuir turbulence in the beam plasma interaction, Phys. Plasmas, 4, 945.

    ADS  Google Scholar 

  • Melrose, D.B. (1986) Instabilities in space and laboratory plasmas, Cambridge University Press, Cambridge.

    Google Scholar 

  • Menk, F.W., Marshall, R.A. and Fraser, B.J. (1995) Geomagnetic Pulsations in the Ionosphere, Adv. Space Res., 16, 121.

    ADS  Google Scholar 

  • Meshkov, I.N., Nagaitsev, S.S., Seleznev, I.A. and Syresin, E.N. (1990) Beam-plasma discharge during the injection of an electron beam into a low-density gas, Sov. J. Plasma Phys., 16, 772.

    Google Scholar 

  • Miller, J.A., Cargill, P.J., Emslie, A.G., Holman, G.D., Dennis, B.R., LaRosa, T.N., Winglee, R.M., Benka, S.G. and Tsuneta, S. (1997) Critical issues for understanding particle acceleration in impulsive solar flares, J. Geophys. Res., 102, 14631.

    ADS  Google Scholar 

  • Müller, G. (1973) Experimental study of torsional Alfven waves in a cylindrical partially ionized magnetoplasrna, Plasma Phys., 16, 813.

    Google Scholar 

  • Nakamura, Y. (1982) Experiments on Ion-Acoustic Solitons in Plasmas, IEEE Trans. Plasma Sci., 10, 180.

    ADS  Google Scholar 

  • Nasagawa, T. and Nishida, Y. (1986) Nonlinear Reflection and Refraction of Planar Ion-Acoustic Plasma Solitons, Phys. Rev. Lett., 56, 2688.

    ADS  Google Scholar 

  • Nemzek, R.J. and Winckler, J.R. (1991) Electron Beam Sounding Rocket Experiments for Probing the Distant Magnetosphere, Phys. Rev. Lett., 67, 987.

    ADS  Google Scholar 

  • Neubert, T. and Banks, P.M. (1992) Recent results from studies of electron beam phenomena in space plasmas, Planet. Space Sci., 40, 153.

    ADS  Google Scholar 

  • Nishida, Y., Yoshida, K. and Nagasawa, T. (1993) Refraction and reflection of ionacoustic solitons by space charge sheaths, Phys. Fluids B, 5, 722.

    ADS  Google Scholar 

  • Oelerich-Hill, G. and Piel, A. (1989) Resonance cones in non-Maxwellian plasmas, Phys. Fluids B, 1, 275.

    ADS  Google Scholar 

  • Pesses, M.E., Jones, W.V. and Forman, M. (1993) Voyager and Pioneer missions to the boundaries of the heliosphere, J. Geophys. Res., 98, 15123.

    ADS  Google Scholar 

  • Piel, A. and Oelerich, G. (1984) Experimental study of kinetic effects on resonance cones, Phys. Fluids, 27, 273.

    ADS  Google Scholar 

  • Pierre, Th. and Leclert, G. (1989) Experimental and numerical study of kinetic effects on the upper hybrid resonance cone, Plasma Phys. Cont. Fus., 31, 371.

    ADS  Google Scholar 

  • Podgorny, I.M. and Sagdeev, R.Z. (1970) Physics of interplanetary plasma and laboratory experiments, Sov. Phys. Usp., 98, 445.

    ADS  Google Scholar 

  • Porkolab, M. and Chang, R.P.H. (1978) Nonlinear wave effects in laboratory plasmas: A comparison between theory and experiment, Rev. Mod. Phys., 50, 745.

    MathSciNet  ADS  Google Scholar 

  • Raitt, W.J. (1996) Active Plasma Experiments in Space: Steps towards a Space Laboratory Facility, Rev. Radio Sci. 1993–1996, edited by W. Ross Stone, Oxford University Press, p. 651.

    Google Scholar 

  • Raychaudhuri, S., Chang, H.Y., Tsikis, E.K. and Lonngren, K.E. (1985) Scattering of ion-acoustic solitons, Phys. Fluids, 28, 2125.

    ADS  Google Scholar 

  • Ripin, B.H., Manka, C.K., Peyser, T.A., McLean, E.A., Stamper, J.A., Mostovych, A.N., Grun, J., Kearney, K., Crawford, J.R. and Huba, J.D. (1990) Laboratory laserproduced astrophysical-like plasmas, Laser Part. Beams, 8, 183.

    ADS  Google Scholar 

  • Robinson, P.A. and Newman, D.L. (1991) Strong Plasma Turbulence in the Earth’s Electron Foreshock, J. Geophys. Res., 96, 17733.

    ADS  Google Scholar 

  • Robinson, P.A. (1997) Nonlinear wave collapse and strong turbulence, Rev. Mod. Phys., 69, 507.

    ADS  Google Scholar 

  • Rousculp, C.L., Stenzel, R.L. and Urrutia, J.M. (1995) Pulsed currents carried by whistlers. V. detailed new results of magnetic antenna excitation, Phys. Plasmas, 2, 4083.

    ADS  Google Scholar 

  • Rycroft, M.J. (1992) A Review of Whistlers and Energetic-Electron Precipitations, in Review of Radio Science 1990–1992, edited by W. Ross Stone, Oxford University Press, Oxford, p. 631.

    Google Scholar 

  • Sazhin, S.S. (1992) Whistler-Mode Waves in the Earth’s Magnetosphere (Theory and Observations), in Review of Radio Science 1990–1992, edited by W. Ross Stone, Oxford University Press, Oxford, p. 621.

    Google Scholar 

  • Sazhin, S.S., Bullough, K. and Hayakawa, M. (1993) Auroral hiss: a review, Planet. Space Sci., 41, 153.

    ADS  Google Scholar 

  • Schwartz, S.J., Thomsen, M.F., Feldman, W.C. and Douglas, F.T. (1987) Electron dynamics and potential jump across slow mode shocks, J. Geophys. Res., 92, 3165.

    ADS  Google Scholar 

  • Sckopke, N., Paschmann, G., Barne, S.J., Gosling, J.T. and Russell, C.T. (1983) Evolution of ion distributions across the nearly perpendicular bow shock: specularly and nonspecularly reflected-gyrating ions, J. Geophys. Res., 88, 6121.

    ADS  Google Scholar 

  • Shinohara, M., Yumoto, K. and Schuch, N.J. (1998) Wave characteristics of geomagnetic pulsations across the dip equator, J. Geophys. Res., 103, 11745.

    ADS  Google Scholar 

  • Stenzel, R.L., Wong, A.Y. and Kim, H.C. (1974) Conversion of Electromagnetic Waves to Electrostatic Waves in Inhomogeneous Plasmas, Phys. Rev. Lett., 32, 654.

    ADS  Google Scholar 

  • Stenzel, R.L. (1976a) Whistler wave propagation in a large magnetoplasma, Phys. Fluids, 19, 857.

    ADS  Google Scholar 

  • Stenzel, R.L. (1976b) Filamentation instability of a large amplitude whistler wave, Phys. Fluids, 19, 865.

    ADS  Google Scholar 

  • Stenzel, R.L. (1976c) Antenna radiation patterns in the whistler wave measured in a large laboratory plasma, Radio Sci., 11, 1045.

    ADS  Google Scholar 

  • Stenzel, R.L. (1977) Observation of Beam-Generated VLF Hiss in a Large Laboratory Plasma, J. Geophys. Res., 82, 4805.

    ADS  Google Scholar 

  • Stenzel, R.L. and Urrutia, J.M. (1990a) Force-Free Electromagnetic Pulses in a laboratory Plasma, Phys. Rev. Lett., 65, 2011.

    ADS  Google Scholar 

  • Stenzel, R.L. and Urrutia, J.M. (1990b) Currents Between Tethered electrodes in a Magnetized Laboratory Plasma, J. Geophys. Res., 95, 6209.

    ADS  Google Scholar 

  • Stenzel, R.L., Urrutia, J.M. and Rousculp, C.L. (1992) Transport of Time-Varying Plasma Currents by Whistler Wave Packets, IEEE Thins. Plasma Sci, 20, 787.

    Google Scholar 

  • Stenzel, R.L., Urrutia, J.M. and Rousculp, C.L. (1993) Pulsed currents carried by whistlers. Part I. Excitation by magnetic antennas, Phys. Fluids B, 5, 325.

    ADS  Google Scholar 

  • Stenzel, R.L., Urrutia, J.M. and Rousculp, C.L. (1995) Pulsed currents carried by whistlers. IV. Electric fields and radiation excited by an electrode, Phys. Plasmas, 2, 1114.

    ADS  Google Scholar 

  • Stenzel, R.L. and Urrutia, J.M. (1996) Pulsed currents carried by whistlers. VII. Helicity and tranport in heat pulses, Phys. Plasmas, 3, 2599.

    ADS  Google Scholar 

  • Stenzel, R.L. and Urrutia, J.M. (1997) Pulsed currents carried by whistlers. VIII. Current disruptions and instabilities caused by plasma erosion, Phys. Plasmas, 4, 26.

    ADS  Google Scholar 

  • Strokin, N.A. (1985) Ion heating and energy redistribution in a collisionless shock wave, Sov. Phys. JETP, 61, 1187.

    Google Scholar 

  • Stubbe, P. (1996) Review of ionospheric modification experiments at Tromso, J. Atmos. Terr. Phys., 58, 349.

    ADS  Google Scholar 

  • Sturrock, P.A. (1994) Plasma Physics, An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas, Cambridge University Press, Cambridge.

    Google Scholar 

  • Suess, S.T. (1993) Temporal variations in the termination shock distance, J. Geophys. Res., 98, 15147.

    ADS  Google Scholar 

  • Sugai, H., Maruyama, M., Sato, M. and Takeda, S. (1978) Whistler wave ducting caused by antenna actions, Phys. Fluids, 21, 690.

    ADS  Google Scholar 

  • Sugai, H., Niki, H., Takeda, S. and Inutake, M. (1980) Whistler wave trapping in a density crest, Phys. Fluids, 23, 2134.

    ADS  Google Scholar 

  • Szuszczewicz, E.P., Papadopoulos, K., Bernstein, W., Lin, C.S. and Walker, D.N. (1982) Threshold Criterion for a Space Simulation Beam-Plasma Discharge, J. Geophys. Res., 87, 1565.

    ADS  Google Scholar 

  • Szuszczewicz, E.P (1985) Controlled electron beam experiments in space and supporting laboratory experiments: A review, J. Atmos. Terr. Phys., 47, 1189.

    ADS  Google Scholar 

  • Tang, J.T. and Luhmann Jr., R.C. (1976) Destabilization of hydromagnetic drift-Alfven waves in a finite pressure, collisional plasma, Phys. Fluids, 19, 1935.

    ADS  Google Scholar 

  • Tanikawa, T., Wong, A.Y. and Eggleston, D.L. (1984) Trapping of plasma waves in cavitons, Phys. Fluids, 27, 1416.

    ADS  Google Scholar 

  • Taylor, R.J., Baker, D.R. and Ikezi, H. (1970) Observation of collisionless electrostatic shocks, Phys. Rev. Lett., 24, 206.

    ADS  Google Scholar 

  • Treumann, R.A. and Baumjohann, W. (dy1997) Advanced Space Plasma Physics, Imperial College Press.

    Google Scholar 

  • Urrutia, J.M. and Stenzel, R.L. (1990) Modeling of induced currents from electrodynamic tethers in a laboratory plasma, Geophys. Res. Lett., 17, 1589.

    ADS  Google Scholar 

  • Urrutia, J.M., Stenzel, R.L. and Rousculp, C.L. (1994a) Pulsed currents carried by whistlers. II. Excitation by biased electrodes, Phys. Plasmas, 1, 1432.

    ADS  Google Scholar 

  • Urrutia, J.M., Stenzel, R.L. and Rousculp, C.L. (1994b) Three-dimensional currents of electrodynamic tethers obtained from laboratory models, Geophys. Res. Lett., 21, 413.

    ADS  Google Scholar 

  • Urrutia, J.M., Stenzel, R.L. and Rousculp, C.L. (1995) Pulsed currents carried by whistlers. III. Magnetic fields and currents excited by an electrode, Phys. Plasmas, 2, 1100.

    ADS  Google Scholar 

  • Urrutia, J.M. and Stenzel, R.L. (1996) Pulsed currents carried by whistlers. VI. Nonlinear effects, Phys. Plasmas, 3, 2589.

    ADS  Google Scholar 

  • Vyacheslavov, L.N., Burmasov, V.S., Kandaurov, I.V., Kruglyakov, E.P., Meshkov, O.I. and Sanin, A.L. (1995) Spectra of developed Langmuir turbulence in a nonisothermal magnetized plasma, Phys. Plasmas, 2, 2224.

    ADS  Google Scholar 

  • Whelan, D.A. and Stenzel, R.L. (1981) Electromagnetic-Wave Excitation in a Large Laboratory Beam-Plasma System, Phys. Rev. Lett., 47, 95.

    ADS  Google Scholar 

  • Whelan, D.A. and Stenzel, R.L. (1985) Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system, Phys. Fluids, 28, 958.

    ADS  Google Scholar 

  • Winckler, J.R. (1992) Controlled experiments in the Earth’s magnetosphere with artificial electron beams, Rev. Mod. Phys., 64, 859.

    ADS  Google Scholar 

  • Wong, A.Y. and Means, R.W. (1971) Evolution of Turbulent Electrostatic Shocks, Phys. Rev. Lett., 27, 973.

    ADS  Google Scholar 

  • Wong, A.Y. and Quon, B.H. (1975) Spatial Collapse of Beam-Driven Plasma Waves, Phys. Rev. Lett., 34, 1499.

    ADS  Google Scholar 

  • Wong, A.Y. and Cheung, P.Y. (1984) Three-Dimensional Self-Collapse of Langmuir Waves, Phys. Rev. Lett., 52, 1222.

    ADS  Google Scholar 

  • Yatsui, K. and Imai, T. (1975) Plasma Heating by Lower-Hybrid Parametric Instability Pumped by an Electron Beam, Phys. Rev. Lett., 35, 1279.

    ADS  Google Scholar 

  • Yatsui, K., Shimada, M. and Yokoyama, M. (1976) Plama Heating by Ion-Cyclotron Parametric Instability in a Modulated Electron-Beam-Plasma System, J. Phys. Soc. Jpn, 41, 1085.

    ADS  Google Scholar 

  • Yi, S., Bai, E.W. and Lonngren, K.E. (1997) Ion acoustic soliton excitation using a modulated high-frequency sinusoidal wave, Phys. Plasmas, 4, 2436.

    ADS  Google Scholar 

  • Zaboronkova, T.M., Kostrov, A.V., Kudrin, A.V., Tikhonov, S.V., Tronin, A.V. and Shaikin, A.I. (1992) Channeling of waves in the whistler frequency range within nonuniform plasma structures, Sov. Phys. JETP, 75, 625.

    Google Scholar 

  • Zakharov, V.E. (1972) Collapse of Langmuir Waves, Sov. Phys. JETP, 35, 908.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krafft, C., Starodubtsev, M.V. (1999). Space Plasma Phenomena: Laboratory Modeling. In: Ehrenfreund, P., Krafft, C., Kochan, H., Pirronello, V. (eds) Laboratory Astrophysics and Space Research. Astrophysics and Space Science Library, vol 236. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4728-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4728-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5988-6

  • Online ISBN: 978-94-011-4728-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics